Sebaran Nyamuk Pradewasa Berdasarkan Tipe Ekosistem dan Habitat Spesifik di Kabupaten Pandeglang Provinsi Banten

Distribution of Mosquito Larvae Based on Ecosystem Type and Specific Habitat in Pandeglang District Banten Province

Keywords: habitat, ecosystem, larvae vector, Pandeglang

Abstract

Abstract. The vector-borne disease remains a health problem in Pandeglang District. Entomological data is important in the strategy of controlling the vector-borne disease. This study aimed to determine the distribution of mosquito larvae based on specific habitat and ecosystem typea. This research is a secondary data analysis of Rikhus Vektora 2016 in Pandeglang, Banten Province. This type of observational research with cross-sectional study design. The purposive sampling technique is used based on geographical and ecosystem stratification. We found 12 types of environments of the six types of ecosystems (HDP, HJP, NHDP, NHJP, PDP, and PJP) that had larvae: forest (secondary, homogeneous, and coastal); lagoon; brackish water swamp; bamboo clumps; rice fields; plantations; and residential areas. The most ecosystem types were larvae in HJP (160 larvae) and the least larvae in NHDP (9 larvae). Species of larvae are 16 types: rice fields (Cx. vishui, Cx. tritaeniorhynchus, An. barbirostris); small hole in the ground (Anopheles sp., Culex sp.); coconut shell (Ae. albopictus, Ar. malayi, Ar. kuchingensis, Malaya sp, Culex sp.); armpit taro leaves and banana leaves (Ae. albopictus, Malaya genurostris); freshwater swamp (Cx. vishnui, Cx. gelidus) and brackish water (Anopheles sp.); riverside (Anopheles sp., Cx. quinquefasciatus); ditch (Culex sp.); pool (Cx. quinquefasciatus); lagoon (Anopheles sp., Culex sp.); bamboo stumps (Ae. albopictus); Limnocharis flava garden (Culex sp.); and used bottles (Ae. albopictus). The characteristics of larvae habitat: temperature (25-33oC); pH 8-9 (67.3%); light intensity (115-32,000 lux); vegetation (12.7%); algae (3.6%); water is temporary (61.6%), inundated (78.2%) and clear (50,9%).


Abstrak. Penyakit tular vektor masih menjadi masalah kesehatan di Kabupaten Pandeglang. Data vektor penting dalam strategi pengendalian penyakit tular vektor. Tujuan penelitian ini untuk mengetahui sebaran jentik nyamuk berdasarkan habitat spesifik dan tipe ekosistem. Penelitian ini merupakan analisa data sekunder Rikhus Vektora 2016 di Kabupaten Pandeglang Provinsi Banten. Jenis penelitian observasional dengan rancangan studi potong lintang. Teknik purposive sampling, digunakan berdasarkan stratifikasi geografis dan ekosistem. Didapatkan 12 jenis lingkungan yang berhasil diidentifikasi dari enam tipe ekosistem (HDP, HJP, NHDP, NHJP, PDP, dan PJP) dengan jentik, yaitu: hutan (sekunder, homogen, pantai); laguna; rawa air payau; rumpun bambu; sawah; perkebunan (salak, pisang, kelapa, kopi); daerah pemukiman. Tipe ekosistem terbanyak jentik di HJP (160 jentik) dan sedikit jentik di NHDP (9 jentik). Habitat spesifik jentik ada 16 jenis, yaitu: sawah (Cx. vishui, Cx. tritaeniorhynchus, An. barbirostris); kobakan (Anopheles sp., Culex sp.); tempurung kelapa (Ae. albopictus, Ar. malayi, Ar. kuchingensis, Malaya sp., Culex sp.); ketiak daun talas dan daun pisang (Ae. albopictus, Malaya genurostris); rawa air tawar (Cx. vishnui, Cx. gelidus) dan air payau (Anopheles sp.); tepi sungai (Anopheles sp., Cx. quinquefasciatus); parit (Culex sp.); kolam (Cx. quinquefasciatus); laguna (Anopheles sp., Culex sp.); tunggul bambu (Ae. albopictus); kebun genjer (Culex sp.); serta botol bekas (Ae. albopictus). Karakteristik habitat jentik pada: suhu (25-33oC); pH 8-9 (67,3%); intensitas cahaya (115-32.000 lux); vegetasi
(12,7%); alga (3,6%); air bersifat sementara (61,6%), tergenang (78,2%) dan jernih (50,9%).

References

1. Kirnowardodjo. Penelitian vektor malaria yang dilakukan oleh institusi kesehatan tahun 1975-1990. Bul Penelit Kesehat. 1991;19(4):24-32.

2. Kementerian Kesehatan R.I. Laporan Riset Khusus Vektor Dan Reservoir Penyakit (Riskhus Vektora) Provinsi Banten. Salatiga: Balai Besar Litbang Vektor dan Reservoir Penyakit (B2P2VRP) Balitbangkes Kemenkes R.I.; 2016.

3. Kementerian Kesehatan RI. Profil Kesehatan Indonesia Tahun 2018. Jakarta; 2019.

4. Derua YA, Alifrangis M, Hosea KM, et al. Change in composition of the Anopheles gambiae complex and its possible implications for the transmission of malaria and lymphatic filariasis in north-eastern Tanzania. Malar J. 2012;11. doi:10.1186/1475-2875-11-188

5. Manguin S, Bangs MJ, Pothikasikorn J, Chareonviriyaphap T. Review on global co-transmission of human Plasmodium species and Wuchereria bancrofti by Anopheles mosquitoes. Infect Genet Evol. 2010;10(2):159-177. doi:10.1016/j.meegid.2009.11.014

6. Elyazar I, Sinka M, Gething P, et al. The Distribution and Bionomics of Anopheles Malaria Vector Mosquitoes in Indonesia. Adv Parasitol. 2013;2013(8):173-266.

7. St. Laurent B, Supratman S, Asih PBS, et al. Behaviour and molecular identification of Anopheles malaria vectors in Jayapura district, Papua province, Indonesia. Malar J. 2016;15(1). doi:10.1186/s12936-016-1234-5

8. Thenmozhi V, Rajendran R, Ayanar K, Manavalan R, Tyagi BK. Long-term study of Japanese encephalitis virus infection in Anopheles subpictus in Cuddalore district, Tamil Nadu, South India. Trop Med Int Heal. 2006;11(3):288-293. doi:10.1111/j.1365-3156.2006.01567.x

9. Olson JG, Ksiazek TG, Lee VH, Tan R, Shope RE. Isolation of japanese encephalitis virus from anopheles annularis and anopheles vagus in lombok, indonesia. Trans R Soc Trop Med Hyg. 1985;79(6):845-847. doi:10.1016/0035-9203(85)90135-X

10. Widiarti, Tunjungsari R, Garjito TWA. Molecular confirmation of Japanese Encephalitis (JE) Vector in Surabaya, East Jawa (in Bahasa Indonesia). Vektora. 2014;6(September):73-78. http://ejournal.litbang.depkes.go.id/index.php/vk/article/view/3806/3665.

11. Garjito TA, Widiarti, Anggraeni YM, et al. Japanese encephalitis in Indonesia: An update on epidemiology and transmission ecology. Acta Trop. 2018;187:240-247. doi:10.1016/j.actatropica.2018.08.017

12. 12 Dida GO, Anyona DN, Abuom PO, Akoko D, Adoka SO, Matano AS et al. Spatial distribution and habitat characterization of mosquito species during the dry season along the Mara River and its tributaries, in Kenya and Tanzania. Infect Dis Poverty. 2018; 7: 1–16.

13 Dida GO, Gelder FB, Anyona DN, Abuom PO, Onyuka JO, Matano AS et al. Presence and distribution of mosquito larvae predators and factors influencing their abundance along the Mara River, Kenya and Tanzania.
Springerplus. 2015. doi:10.1186/s40064- 015-0905-y.

14 Oindo BO, Skidmore AK, De Salvo P. Mapping habitat and biological diversity in the Maasai Mara ecosystem. Int J Remote Sens. 2003. doi:10.1080/01431160210144552.

15. Putra AK, Bakri S, Kurniawan B. Peranan Ekosistem Hutan Mangrove pada Imunitas terhadap Malaria: Studi di Kecamatan Labuhan Maringgai Kabupaten Lampung Timur. J Sylva Lestari. 2015;3(2):67-78. doi:10.23960/jsl2367-78

16. Sularno S. Faktor-Faktor Yang Berhubungan Dengan Kejadian Filariasis Di Kecamatan Buaran Kabupaten Pekalongan. J Kesehat Lingkung Indones. 2017;16(1):22. doi:10.14710/jkli.16.1.22-28

17. Gafur A, Jastam MS. Faktor yang Berhubungan dengan Keberadaan Jentik Nyamuk Aedes aegypti di Kelurahan Batua Kota Makassar Tahun 2015. J Public Heal Sci. 2015;7(1):50-62.

18. Astuti EP, Fuadzy H, Prasetyowati H. Pengaruh Kesehatan Lingkungan Pemukiman Terhadap Kejadian Demam Berdarah Dengue (DBD) Di Jawa Barat Tahun 2013. Analisa Lanjut Riskesdas. Ciamis; 2014.

19. Astuti EP, Prasetyowati H, Ginanjar A. Risiko Penularan Demam Berdarah Dengue berdasarkan Maya Indeks dan Indeks Entomologi di Kota Tangerang Selatan, Banten. Media Penelit dan Pengemb Kesehatan. 2016. doi:10.22435/mpk.v26i4.4510.211-218

20. Prasetyowati H, Ginanjar A. Maya Indeks dan Kepadatan Larva Aedes aegypti di Daerah Endemis DBD Jakarta Timur. Vektora. 2017;9(1):43-49.

21. Dhewantara PW, Dinata A. Analisis Risiko Dengue Berbasis Maya Index pada rumah penderita DBD di Kota Banjar. BALABA. 2012;Vol 2 (1):1-8.

22. Dhewantara PW, Astuti EP, Pradani FY. Studi Bioekologi Nyamuk Anopheles sundaicus di Desa Sukaresik Kecamatan Sidamulih Kabupaten Ciamis. Bull Heal Res. 2013;41(1r):26-36. doi:10.22435/bpk.v41i1Mar.3056.26-36

23. Astuti EP, Ipa M, Wahono T, Ruliansyah A, Hakim L, Dhewantara PW. The Distribution of Culex spp (Diptera: Culicidae) in Selected Endemic Lymphatic Filariasis Villages in Bandung District West Java Indonesia. ASPIRATOR - J Vector-borne Dis Stud. 2017;9(2):61-68. doi:10.22435/aspirator.v9i2.6299.61-68

24 Kumar R, Muhid P, Dahms HU, Tseng LC, Hwang JS. Potential of three aquatic predators to control mosquitoes in the presence of alternative prey: A comparative experimental assessment. Mar Freshw Res. 2008. doi:10.1071/MF07143.

25 Kweka EJ, Zhou G, Gilbreath TM, Afrane Y, Nyindo M, Githeko AK et al. Predation efficiency of Anopheles gambiae larvae by aquatic predators in western Kenya highlands. Parasites and Vectors. 2011. doi:10.1186/1756-3305-4-128.

26. Badan Pusat Statistik. Kabupaten Pandeglang Dalam Angka. Kabupaten Pandeglang; 2019.

27. A MS, V H, A A, B H, Z M. Environmental characteristics of anopheline mosquito larval habitats in a malaria endemic area in Iran. 2013; : 510–515.

28. Supranelfy Y, Santoso. Sebaran Nyamuk Vektor di Kabupaten Muaro Jambi, Provinsi Jambi. SPIRAKEL. 2016;8(1). doi:10.22435/spirakel.v8i1.6134.21-29

29. Supriyono S, Tan S, Hadi UK. Ragam Spesies dan Karakteristik Habitat Nyamuk di Kecamatan Juai, Kabupaten Balangan, Provinsi Kalimantan Selatan. ASPIRATOR - J Vector-borne Dis Stud. 2019;11(1):19-28. doi:10.22435/asp.v11i1.186

30. Pratama GY. Nyamuk Anopheles Sp dan Faktor yang Mempengaruhi di Kecamatan Rajabasa, Lampung Selatan. J Major. 2015;4(1):20-27. http://juke.kedokteran.unila.ac.id/index.php/majority/article/view/496.

31. Suwito S, Hadi UK, Sigit SH, Sukowati S. Hubungan Iklim, Kepadatan Nyamuk Anopheles dan Kejadian Penyakit Malaria. J Entomol Indones. 2015;7(1):42. doi:10.5994/jei.7.1.42

32. Tallan MM, Mau F. Karakteristik Habitat Perkembangbiakan Vektor Filariasis di Kecamatan Kodi Balaghar Kabupaten Sumba Barat Daya. ASPIRATOR - J Vector-borne Dis Stud. 2016;8(2). doi:10.22435/aspirator.v8i2.4243.55-62

33. Vadivalagan C, Karthika P, Murugan K, Panneerselvam C, Del Serrone P, Benelli G. Exploring genetic variation in haplotypes of the filariasis vector Culex quinquefasciatus (Diptera: Culicidae) through DNA barcoding. Acta Trop. 2017;169:43-50. doi:10.1016/j.actatropica.2017.01.020

34. Arimurti ARR. Keanekaragaman Genetik Nyamuk Vektor Filariasis Culex quinquefasciatus Say, 1823 (Diptera: Culicidae) di Kota dan Kabupaten Pekalongan Dengan Metode PCR-RAPD. J Muhammadiyah Med Lab Technol. 2018;1(2):42. doi:10.30651/jmlt.v1i2.1496

35. Leisnham PT, LaDeau SL, Juliano SA. Spatial and temporal habitat segregation of mosquitoes in Urban Florida. PLoS One. 2014;9(3). doi:10.1371/journal.pone.0091655

36. Longbottom J, Browne AJ, Pigott DM, et al. Mapping the spatial distribution of the Japanese encephalitis vector, Culex tritaeniorhynchus Giles, 1901 (Diptera: Culicidae) within areas of Japanese encephalitis risk. Parasites and Vectors. 2017;10(1). doi:10.1186/s13071-017-2086-8

37. Hasegawa M, Tuno N, Nguyen TY, Vu SN, Takagi M. Influence of the distribution of host species on adult abundance of Japanese encephalitis vectors - Culex vishnui subgroup and Culex gelidus - In a rice-cultivating village in Northern Vietnam. Am J Trop Med Hyg. 2008;78(1):159-168. doi:10.4269/ajtmh.2008.78.159

38. Oyewole I, Momoh O, Anyasor G, Ogunnowo A, Ibidapo C, Oduola O et al. Physico-chemical characteristics of Anopheles breeding sites: Impact on fecundity and progeny development. African J Environ Sci Technol. 2009. doi:10.5897/AJEST09.112

39. Adnyana N, Willa R, Noshirma M. Beberapa Aspek Perilaku Nyamuk Anopheles barbirostris di Kabupaten Sumba Tengah Tahun 2011. Media Penelit dan Pengemb Kesehat. 2012;22(4). doi:10.22435/mpk.v22i4.2911.

40. Muhammad R, Soviana S, Upik Kesumawati Hadi U. Keanekaragaman jenis dan karakteristik habitat nyamuk Anopheles spp. di Desa Datar Luas, Kabupaten Aceh Jaya, Provinsi Aceh. J Entomol Indones. 2015;12(3):138-148. doi:10.5994/jei.12.3.139

41. Werner D, Kampen H. Aedes albopictus breeding in southern Germany, 2014. Parasitol Res. 2015;114(3):831-834. doi:10.1007/s00436-014-4244-7

42. Bonizzoni M, Gasperi G, Chen X, James AA. The invasive mosquito species Aedes albopictus: Current knowledge and future perspectives. Trends Parasitol. 2013;29(9):460-468. doi:10.1016/j.pt.2013.07.003

43. Nikookar SH, Fazeli-Dinan M, Azari-Hamidian S, et al. Correlation between mosquito larval density and their habitat physicochemical characteristics in Mazandaran Province, northern Iran. PLoS Negl Trop Dis. 2017;11(8):e0005835. doi:10.1371/journal.pntd.0005835

44. Nikookar SH, Fazeli-Dinan M, Azari-Hamidian S, et al. Species composition and abundance of mosquito larvae in relation with their habitat characteristics in Mazandaran Province, northern Iran. Bull Entomol Res. 2017. doi:10.1017/S0007485317000074

45. Widawati M, Nurjana MA, Mayasari R. Perbedaan Dataran Tinggi dan Dataran Rendah terhadap Keberagaman Spesies Anopheles spp. di Provinsi Nusa Tenggara Timur. ASPIRATOR - J Vector-borne Dis Stud. 2018;10(2):103-110. doi:10.22435/asp.v10i2.206
Published
2020-12-28
How to Cite
1.
dinata A, Astuti E, Hadisusanto S. Sebaran Nyamuk Pradewasa Berdasarkan Tipe Ekosistem dan Habitat Spesifik di Kabupaten Pandeglang Provinsi Banten. ASP [Internet]. 28Dec.2020 [cited 12Apr.2021];12(2):105-14. Available from: http://ejournal2.litbang.kemkes.go.id/index.php/aspirator/article/view/2270