Deteksi Gen Kdr pada Nyamuk Anopheles di Kabupaten Maluku Tenggara Barat

  • Hanna S.I Kawulur Balai Penelitian dan Pengembangan Kesehatan Papua, Jalan Ahmad Yani Nomor 48 Gurabesi Jayapura, Indonesia
  • Hotma Martogi Lorensi Hutapea Balai Penelitian dan Pengembangan Kesehatan Papua, Jalan Ahmad Yani Nomor 48 Gurabesi Jayapura, Indonesia
  • Ivon Ayomi Balai Penelitian dan Pengembangan Kesehatan Papua, Jalan Ahmad Yani Nomor 48 Gurabesi Jayapura, Indonesia
  • Melda Suebu Balai Penelitian dan Pengembangan Kesehatan Papua, Jalan Ahmad Yani Nomor 48 Gurabesi Jayapura, Indonesia
  • Mardi Raharjo Pardi Balai Penelitian dan Pengembangan Kesehatan Papua, Jalan Ahmad Yani Nomor 48 Gurabesi Jayapura, Indonesia
Keywords: kdr, pyrethroid, Anopheles flavirostris, Anopheles barbirostris, Anopheles subpictus

Abstract

Malaria is still a health problem in Indonesia, particularly in Eastern part of Indonesia. The use of LLIN insecticide bed nets is one of the efforts to reduce the malaria morbidity rate by protecting human from malaria vector bites. The Anopheles flavirostris, Anopheles barbirostris, and Anopheles subpictus mosquitoes are three of the species reported as malaria vectors in West-Southeast Maluku Regency. The aim of this research was to detect the kdr gene in An. flavirostris, An. barbirostris, and An.subpictus mosquitoes collected from Alusi Kelaan village, West-Southeast Maluku Regency. The research was conducted at the Papua Biomedical Research and Development Center, in June 2016. A total of six An. flavirostris, 42 An. barbirostris, and 24 An. subpictus were pooled separately for genomic DNA extraction. The sample used was the An. flavirostris, An. barbirostris, and An. subpictus that survived after the impregnated paper test. The kdr gene detection was carried out using quantitative PCR (qPCR) focused on points V1010 and L1014. The results showed that there were no kdr mutant strains in the An. flavirostris, An. barbirostris, and An. subpictus. These results indicated that the sensitivity of pyrethroid insecticides contained in LLIN mosquito nets to An. flavirostris, An. barbirostris, and An. subpictus mosquitoes was not decreased in West Southeast Maluku Regency.

References

1. Dinas Kesehatan Provinsi Maluku. Profil kesehatan Provinsi Maluku Tahun 2014. Maluku: Dinas Kesehatan Provinsi Maluku; 2015.

2. Majawati ES. Kerentanan vektor demam berdarah dengue terhadap insektisida golongan organofosfat. Jurnal Kedokteran Meditek. 2015;21(56):1–4.

3. Sandy S, Ayomi I, Suebu MS, Maladan Y, Pardi MR, Lewier J. Entomological surveillance of malaria vectors in Saumlaki, Maluku Tenggara Barat Regency, Maluku Province. J Kesehat Masy. 2017;12(2):96–103. doi: 10.15294/kemas.v12i2.5970.

4. Sayono, Syafruddin D, Sumanto D. Distribusi resistensi nyamuk Aedes aegypti terhadap insektisida sipermetrin di Semarang. Prosiding Seminar Hasil-Hasil Penelitian - LPPM UNIMUS. 2012:263–9.

5. Ikawati B, Sunaryo S, Widiastuti D. Peta status kerentanan Aedes aegypti (Linn.) terhadap insektisida cypermethrin dan malathion di Jawa Tengah. ASPIRATOR. 2015;7(1):23–8.

6. Ghiffari A, Fatimi H, Anwar C. Deteksi resistensi insektisida sintetik piretroid pada Aedes aegypti (L.) strain Palembang menggunakan teknik polymerase chain reaction. ASPIRATOR. 2013;5(2):37–44.

7. World Health Organization. Malaria entomology and vector control guide for participants. Malta: WHO Press; 2013. Available from: https://apps.who.int/iris/bitstream/handle/10665/85890/9789241505819_eng.pdf.

8. Syafruddin D, Hidayati APN, Asih PBS, Hawley WA, Sukowati S, Lobo NF. Detection of 1014F kdr mutation in four major Anopheline malaria vectors in Indonesia. Malar J. 2010; 9(315):1–8. doi: 10.1186/1475-2875-9-315.

9. Ranson H, Jensen B, Vulule JM, Wang X, Hemingway J, Collins FH. Identification of a point mutation in the voltage-gated sodium channel gene of Kenyan Anopheles gambiae associated with resistance to DDT and pyrethroids. Insect Mol Biol. 2001;9(5):491–7. doi: 10.1046/j.1365-2583.2000.00209.x.

10. Martinez-Torres D, Chandre F, Williamson MS, Darriet F, Bergé JB, Devonshire AL, et al. Molecular characterization of pyrethroid knockdown resistance (kdr) in the major malaria vector Anopheles gambiae s.s. Insect Mol Biol. 1998;7(2):179–84. doi: 10.1046/j.1365-2583.1998.72062.x.

11. Kazanidou A, Nikou D, Grigoriou M, Vontas J, Skavdis G. Short report: a multiplex PCR assay for simultaneous genotyping of kdr and ace-1 loci in Anopheles gambiae. Am J Trop Med Hyg. 2009;80(2):236–8. doi: 10.4269/ajtmh.2009.80.236.

12. Duke SO, Powles SB. Glyphosate: a once-in-a-century herbicide. Pest Manag Sci. 2008;64(4):319-25. doi: 10.1002/ps.1518.

13. Saavedra-rodriguez K, Strode C, Suarez AF, Salas IF, Ranson H, Hemingway J, et al. Quantitative trait loci mapping of genome regions controlling permethrin resistance in the mosquito Aedes aegypti. 2008;180(2):1137–1152. doi: 10.1534/genetics.108.087924.

14. Rahayu N, Sulasmi S, Suryatinah Y. Status kerentanan Aedes aegypti terhadap beberapa golongan insektisida di Provinsi Kalimantan Selatan. JHECDs. 2017;3(2):56–62. doi: 10.22435/jhecds.v3i2.1792.

15. Sunaryo S, Widiastuti D. Resistensi Aedes aegypti terhadap insektisida kelompok organopospat dan sintetik piretroid di Provinsi Sumatera Utara dan Provinsi Jambi. BALABA. 2018;14(1):95–106. doi: 10.22435/blb.v14i1.304.

16. Yudhana A, Praja RN, Yunita MN. Deteksi gen resisten insektisida organofosfat pada Aedes aegypti di Banyuwangi, Jawa Timur menggunakan polymerase chain reaction. J Vet. 2017;18(3):446-52. doi: 10.19087/jveteriner.2017.18.3.446.

17. Purwaningsih, Umniyati SR, Mulyaningsih. Combined target site VGSC mutations play a primary role in pyrethroid resistant phenotypes of Aedes aegypti as dengue vector from Palu City, Central Sulawesi. Indones J Trop Infect Dis. 2019;7(5):93-8. doi: 10.20473/ijtid.v7i5.10384.

18. Singh OP, Dykes CL, Lather M, Agrawal OP, Adak T. Knockdown resistance (kdr)-like mutations in the voltage-gated sodium channel of a malaria vector Anopheles stephensi and PCR assays for their detection. Malar J. 2011;10(59):1–7. doi: 10.1186/1475-2875-10-59.

19. Bass C, Nikou D, Donnelly MJ, Williamson
MS, Ranson H, Ball A, et al. Detection of knockdown resistance (kdr) mutations in Anopheles gambiae: a comparison of two new high-throughput assays with existing methods. Malar J. 2007;6(111):1–14. doi: 10.1186/1475-2875-6-111.

20. Nwane P, Etang J, Chouaїbou M, Toto JC, Koffi A, Mimpfoundi R, et al. Multiple insecticide resistance mechanisms in Anopheles gambiae s.l. populations from Cameroon, Central Africa. Parasit Vectors. 2013;6(41):1–14. doi: 10.1186/1756-3305-6-41.

21. World Health Organization. Global plan for insecticide resistance management in malaria vectors. France: WHO Press; 2012. Available form: https://apps.who.int/iris/bitstream/handle/10665/44846/9789241564472_eng.pdf?sequence=1&isAllowed=.

22. Sousa JO, De Albuquerque BC, Coura JR, Suárez-Mutis MC. Use and retention of long-lasting insecticidal nets (LLINs) in a malaria risk area in the Brazilian Amazon: a 5-year follow-up intervention. Malar J. 2019;18(100):1–13. doi: 10.1186/s12936-019-2735-9.

23. Kilian A, Obi E, Mansiangi P, Abílio AP, Haji KA, Blaufuss S, et al. Variation of physical durability between LLIN products and net use environments: summary of findings from four African countries. Malar J. 2021;20(26):1–11. doi: 10.1186/s12936-020-03549-2.

24. Vinit R, Timinao L, Bubun N, Katusele M, Robinson L, Kaman P, et al. Decreased bioefficacy of long-lasting insecticidal nets and the resurgence of malaria in Papua New Guinea. Nat Commun. 2020;11(1):1–7.
doi: 10.1038/s41467-020-17456-2.

25. Sombié A, Saiki E, Yaméogo F, Sakurai T, Shirozu T, Fukumoto S, et al. High frequencies of F1534C and V1016I kdr mutations and association with pyrethroid resistance in Aedes aegypti from Somgandé (Ouagadougou), Burkina Faso. Trop Med Health. 2019;47(2):1-8. doi: 10.1186/s41182-018-0134-5.

26. World Health Organization. Test procedures for insecticide resistance monitoring in malaria vectors, bio-efficacy and persistence of insecticides on treated surfaces. 1998. Available from: https://apps.who.int/iris/handle/10665/64879.
27. Contreras-Perera Y, Ponce-Garcia G, Villanueva-Segura K, Lopez-Monroy B, Rodríguez-Sanchez IP, Lenhart A, et al. Impact of deltamethrin selection on kdr mutations and insecticide detoxifying enzymes in Aedes aegypti from Mexico. Parasit Vectors. 2020;13(224):1–22. doi: 10.1186/s13071-020-04093-3.

28. Kushwah RBS, Kaur T, Dykes CL, Kumar RH, Kapoor N, Singh OP. A new knockdown resistance (kdr) mutation F1534L in the Aedes aegypti associated with insecticide resistance. bioRxiv. 2019;13(1):1–30. doi: 10.1101/740829.

29. Surendran SN, Jude PJ, Weerarathne TC, Karunaratne SHPP, Ramasamy R. Variations in susceptibility to common insecticides and resistance mechanisms among morphologically identified sibling species of the malaria vector Anopheles subpictus in Sri Lanka. Parasit Vectors. 2012;5(34):1–9.

30. Badan Penelitian dan Pengembangan Kesehatan Kementerian Kesehatan RI. Laporan hasil riset kesehatan dasar Provinsi Maluku Tahun 2008. Jakarta: Badan Penelitian dan Pengembangan Kesehatan; 2009.

31. Nurmaliani R, Oktarina R, Arisanti M, Asyati D. Daya bunuh kelambu berinsektisida long lasting insecticidal nets (LLINS) terhadap nyamuk Anopheles maculatus. ASPIRATOR. 2016;8(1):1–8.

32. Sugiarto, Hadi UK, Soviana S, Hakim L. Efektivitas kelambu berinsektisida terhadap nyamuk Anopheles sundaicus (Diptera: Culicidae) dan penggunaannya di Desa Sungai Nyamuk, Kalimantan Utara. SPIRAKEL. 2018;10(1):1–11. doi: 10.22435/spirakel.v10i1.1159.

33. Hidajat MC, Dharmana E, Prihatin MT, Martini, Ambargarjito T. Molecular resistance status of Aedes aegypti to the organophosphate and pyrethroid insecticides in Central Sulawesi and East Nusa Tenggara Provinces, Indonesia. Proceedings of the 5th Universitas Ahmad Dahlan Public Health Conference (UPHEC 2019). 2020;24:122-7. doi: 10.2991/ahsr.k.200311.023.

34. Zhou X, Yang C, Liu N, Li M, Tong Y, Zeng X, et al. Knockdown resistance (kdr) mutations within seventeen field populations of Aedes albopictus from Beijing China: first report of a novel V1016G mutation and evolutionary origins of kdr haplotypes. Parasit Vectors. 2019;12(180):1–16. doi: 10.1186/s13071-019-3423-x.

35. Brito LP, Carrara L, Freitas RM, Lima JBP, Martins AJ. Levels of resistance to pyrethroid among distinct kdr alleles in Aedes aegypti laboratory lines and frequency of kdr alleles in 27 natural populations from Rio de Janeiro, Brazil. Biomed Res Int. 2018;2018:1-10. doi: 10.1155/2018/2410819.

36. Villanueva-Segura K, Ponce-Garcia G, Lopez-Monroy B, Mora-Jasso E, Perales L, Gonzalez-Santillan FJ, et al. Multiplex PCR for simultaneous genotyping of kdr mutations V410L, V1016I and F1534C in Aedes aegypti (L.). Parasit Vectors. 2020;13(325):1-8. doi: 10.1186/s13071-020-04193-0.
Published
2021-12-14
How to Cite
1.
Kawulur H, Hutapea H, Ayomi I, Suebu M, Pardi M. Deteksi Gen Kdr pada Nyamuk Anopheles di Kabupaten Maluku Tenggara Barat. blb [Internet]. 14Dec.2021 [cited 20Apr.2024];17(2):161-70. Available from: http://ejournal2.litbang.kemkes.go.id/index.php/blb/article/view/4684
Section
Articles