Kemajuan Penelitian Pemodelan Prediksi Demam Berdarah Dengue menggunakan Faktor Iklim di Indonesia : A Systematic Literature Review

RESEARCH IMPROVEMENT OF MODEL PREDICTION OF DENGUE HEMORRHAGIC FEVER USING CLIMATE FACTOR IN INDONESIA: A SYSTEMATIC LITERATURE REVIEW

  • Mamenun Mamenun Pusat Layanan Informasi Iklim Terapan, Badan Meteorologi Klimatologi dan Geofisika, Jl. Angkasa 1 No. 2 Kemayoran , Jakarta Pusat, Indonesia
  • Yonny Koesmaryono Program Studi Klimatologi Terapan, Sekolah Pascasarjana, Institut Pertanian Bogor, Jl. Raya Dramaga, Bogor, Jawa Barat, 16680, Indonesia
  • Rini Hidayati Program Studi Klimatologi Terapan, Sekolah Pascasarjana, Institut Pertanian Bogor, Jl. Raya Dramaga, Bogor, Jawa Barat, 16680, Indonesia
  • Ardhasena Sopaheluwakan Pusat Layanan Informasi Iklim Terapan, Badan Meteorologi Klimatologi dan Geofisika, Jl. Angkasa 1 No. 2, Kemayoran , Jakarta Pusat, Indonesia
  • Bambang Dwi Dasanto Program Studi Klimatologi Terapan, Sekolah Pascasarjana, Institut Pertanian Bogor, Jl. Raya Dramaga, Bogor, Jawa Barat, 16680, Indonesia
Keywords: climate model, DHF disease, Indonesia, dengue

Abstract

Since discovered firstly in 1968, number of cases and areas affected by DHF in Indonesia has been increased. In 2019, dengue cases have found in all provinces within 481 districts/cities (94%). Our research is conducted to analyze the current status and gaps of climate relationship and its modeling to DHF in Indonesia. A systematic searching of literature was carried out through the search engine PubMed and Google Scholar. The method includes determining questions, publication period, keywords, and criteria of literature. Thirty-two literatures have been selected according to the criteria. The study area has covered all provinces in Java, Bali and West Nusa Tenggara, several locations in Sumatra, Kalimantan, Sulawesi, while the eastern region has still limited study. Spatial and temporal variations were used predominantly at the city with monthly data scale. Relationship analysis between DHF cases and climate/non-climate has been used the Spearman’s and Pearson’s correlation. DHF prediction modeling involves dominant climate parameters such as rainfall, temperature, humidity and non climate parameters using linear/non-linear relationships and static/dynamic models. Climate model development needs to be improved with a narrower spatial resolution and shorter time scale, elevation, mobilization, regional climate, and climate change scenarios to get appropriate model on a specific location.

References

WHO. Treatment, prevention and control global strategy for dengue prevention and control 2012-2020. Switzerland (CH): WHO Pr; 2012. 35 p.

Ebi KL, Nealon J. Dengue in a changing climate. Environ Res [Internet]. 2016;151:115–23. Available from: http://dx.doi.org/10.1016/j.envres.2016.07.026

Kobayashi D, Murota K, Fujita R, Itokawa K, Kotaki A, Moi ML, et al. Dengue virus infection in aedes albopictus during the 2014 autochthonous dengue outbreak in Tokyo Metropolis, Japan. Am J Trop Med Hyg. 2018;98(5):1460–8.

Lee JS, Farlow A. The threat of climate change to non-dengue-endemic countries: Increasing risk of dengue transmission potential using climate and non-climate datasets. BMC Public Health. 2019;19(1):1–7.

WHO. Key facts Dengue and severe dengue [Internet]. 2020 [cited 2020 Jul 2]. Available from: https://www.who.int/news-room/factsheets/detail/dengue-and-severe-dengue

Kemenkes. Situasi Demam Berdarah Dengue di Indonesia. Vol. 1. Jakarta: Pusdatin Kemenkes RI; 2014.

Kemenkes. Data dan Informasi Profil Kesehatan Indonesia 2019. Jakarta: Pusdatin KemenkeS RI; 2020.

KOMPAS. 1.216 Orang Terjangkit, Ini Alasan Angka DBD di Sikka, NTT Tertinggi [Internet]. Koran KOMPAS. 2020 [cited 2020 Jul 3]. Available from: https://www.kompas.com/sains/read/2020/03/13/082300323/1.216-orang-terjangkit-ini-alasan-angka-dbd-disikka-ntt-tertinggi?page=all

Barrera R, Amador M, MacKay AJ. Population dynamics of Aedes aegypti and dengue as influenced by weather and human behavior in san juan, puerto rico. PLoS Negl Trop Dis. 2011;5(12).

Hii YL, Zhu H, Ng N, Ng LC, Rocklöv J. Forecast of Dengue Incidence Using Temperature and Rainfall. PLoS Negl Trop Dis. 2012;6(11).

Fauzi IS, Fakhruddin M, Nuraini N, Wijaya KP. Comparison of Dengue Transmission in Lowland and Highland Area: Case Study in Semarang and Malang, Indonesia. Commun Biomath Sci. 2019;2(1):23.

Naish S, Dale P, Mackenzie JS, McBride J, Mengersen K, Tong S. Climate change and dengue: A critical and systematic review of quantitative modelling approaches. BMC Infect Dis [Internet]. 2014;14(1):1–14. Available from: BMC Infectious Diseases

Rodrigues MDM, Marques GRAM, Serpa LLN, Arduino MDB, Voltolini JC, Barbosa GL, et al. Density of Aedes aegypti and Aedes albopictus and its association with number of residents and meteorological variables in the home environment of dengue endemic area, São Paulo, Brazil. Parasites and Vectors. 2015;8(1):1–9.

Haryanto B. Indonesia Dengue Fever: Status, Vulnerability, and Challenges. Curr Top Trop Emerg Dis Travel Med. 2018;(December).

Husnina Z, Clements ACA, Wangdi K. Forest cover and climate as potential drivers for dengue fever in Sumatra and Kalimantan 2006–2016: a spatiotemporal analysis. Trop Med Int Heal. 2019;24(7):888–98.

GFCS. Health Exemplar to the User Interface Platform of the Global Framework for Climate Services. Switzerland (CH): WMO; 2014.

Astuti EP, Dhewantara PW, Prasetyowati H, Ipa M, Herawati C, Hendrayana K. Paediatric dengue infection in Cirebon, Indonesia: A temporal and spatial analysis of notified dengue incidence to inform surveillance. Parasites and Vectors [Internet]. 2019;12(1):1–12. Available from: https://doi.org/10.1186/s13071-019-3446-3

Ramadona AL, Lazuardi L, Hii YL, Holmner Å, Kusnanto H, Rocklöv J. Prediction of dengue outbreaks based on disease surveillance and meteorological data. PLoS One. 2016;11(3):1–18.

Fakhruddin M, Putra PS, Wijaya KP, Sopaheluwakan A, Satyaningsih R, Komalasari KE, et al. Assessing the interplay between dengue incidence and weather in Jakarta via a clustering integrated multiple regression model. Ecol Complex [Internet]. 2019;39(June):100768. Available from: https://doi.org/10.1016/j.ecocom.2019.100768

Moher D, Liberati A, Tetzlaff J, Altman DG, Altman D, Antes G, et al. Preferred reporting items for systematic reviews and metaanalyses: The PRISMA statement. PLoS Med. 2009;6(7).

Sasmito SD, Taillardat P, Clendenning J, Friess DA, Murdiyarso D, Hutley LB. Carbon stocks and fluxes associated with land-use and land-cover change in mangrove ecosystems: A systematic review protocol. Carbon stocks and fluxes associated with land-use and land-cover change in mangrove ecosystems: A systematic review protocol. 2016. Report No.: 211.

Ariati J, Anwar A. Model prediksi kejadian Demam Berdarah Dengue (DBD) Berdasarkan Faktor Iklim di Kota Bogor, Jawa Barat. Bul Penelit Kesehat. 2014;42(4):249–56.

Ariati J, Musadad A. The relationship of climate to dengue cases in Manado, North Sulawesi: 2001-2010. Heal Sci J Indones. 2013;4(1):22–6.

Ariati J, Musadad DA. Kejadian Demam Berdarah Dengue (DBD) dan Faktor Iklim di Kota Batam Provinsi Kepulauan Riau. J Ekol Kesehat. 2012;11(4):279–86.

Arieskha FTA, Rahardjo M, Joko T. Variabilitas Cuaca dan Asosiasinya dengan Kejadian Demam Berdarah Dengue di KAbupaten Tegal. J Kesehat Lingkung. 2019;11(4):339.

Aswi A, Cramb S, Duncan E, Hu W, White G, Mengersen K. Climate variability and dengue in Makassar, Indonesia: Bayesian spatiotemporal modeling. Spat Spatiotemporal Epidemiol. 2020;33:1–8.

Azhar K, Marina R, Anwar A. A prediction model of Dengue incidence using climate variability in Denpasar city. Heal Sci J Indones. 2017;8(2):68–73.

Dini AMV, Fitriany RN, Wulandari RA, Lingkungan DK, Masyarakat FK, Indonesia U. Faktor Iklim dan Angka Insiden Demam Berdarah Dengue di Kabupaten Serang. Makara, Kesehat [Internet]. 2010;14(1):31–8. Available from: http://journal.ui.ac.id/index.php/health/article/viewFile/644/629

Djati AP, Santoso B, Satoto TBT. Hubungan Faktor Iklim Dengan Demam Berdarah Dengue di Kabupaten Kidul Tahun 2010. J Ekol Kesehat. 2012;11(3):230–9.

Hidayati R, Boer R, Koesmaryono Y, Kesumawati U, Manuwoto S. Dengue early warning model using development stages of Aedes aegypti. Biotropia (Bogor). 2012;19(1):30–41.

Iriani Y. Hubungan antara Curah Hujan dan Peningkatan Kasus Demam Berdarah Dengue Anak di Kota Palembang. Sari Pediatr. 2012;13(6):378–83.

Jaya MLH., Fauzi A, Destyanugraha R, Kurniawan R, Mariyah S. Deteksi Dini Kasus Demam Berdarah Dengue Berdasarkan Faktor Cuaca di DKI Jakarta Menggunakan Metode Zero Truncated Negative Binomial. Bul Penelit Kesehat. 2017;45(3):161–8.

Kesetyaningsih TW, Andarini S, Sudarto, factors affecting dengue incidence in Sleman District, Yogyakarta, Indonesia. African J Infect Dis. 2018;12(Special Issue 1):13–25.

Kesetyaningsih TW, Andarini S, Sudarto S, Pramoedyo H. The minimum-maximum weather temperature difference effect on dengue in Sleman Regency of Yogyakarta, Indonesia. Walailak J Sci Technol. 2018;15(5):387–96.

Munir AQ, Hartati S, Musdholifah A. Early identification model for dengue haemorrhagic fever (DHF) outbreak areas using rule-based stratification approach. Int J Intell Eng Syst. 2019;12(2):246–60.

Pascawati NA, Satoto TBT, Wibawa T, Frutos R, Maguin S. Dampak Potensial Perubahan Iklim Terhadap Dinamika Penularan Penyakit DBD Di Kota Mataram. BALABA. 2019;15(1):49–60.

Perwitasari D, Ariati Y. Model prediksi demam berdarah dengue dengan kondisi iklim di kota Yogyakarta. J Ekol Kesehat. 2015;14(2):124– 35.

Putra PS, Nuraini N. Modeling of dengue occurrences early warning involving temperature and rainfall factors. Asian Pacific J Trop Dis. 2017;7(7):385–90.

Putri WA, Rohiman A, Sulistiawati S, Puspitasari D. Effects of Climatic Factors on The Incidence Rate of Dengue Virus Infection in Surabaya During 2010-2013. Biomol Heal Sci J. 2019;2(1):36–40.

Rahayu IT, Nurhasanah N, Adriat R. Prediction of Dengue Hemorrhagic Fever Cases Based on Weather Parameters Using Back Propagation Neural Networks (Case Study in Pontianak City). J Pendidik Fis Indones. 2019;15(2):114– 21.

Renitania, Sampurno J, Ihwan A. Estimasi Peluang Terjadinya Wabah DBD di Kota Pontianak Berdasarkan Tinjauan Cuaca Menggunakan Metode Jaringan Syaraf Tiruan. POSITRON. 2014;IV(1):23–6.

Setiawati MD. The Effect of Climate Variables on Dengue Burden in Indonesia: A Case Study from Medan City. J Geosci Environ Prot. 2019;07(10):80–94.

Siregar FA, Makmur T. Time Series Analysis of Dengue Hemorrhagic Fever Cases and Climate: A Model for Dengue Prediction. J Phys Conf Ser. 2019;1235(1).

Supadmi W, Perwitasari DA, Abdulah R, Suwantika AA. Correlation of rainfall and socio-economic with incidence dengue in Jakarta, Indonesia. J Adv Pharm Educ Res. 2019;9(1):134–42.

Tosepu R, Tantrakarnapa K, Worakhunpiset S, Nakhapakorn K. Climatic factors influencing Dengue Hemorrhagic Fever in Kolaka District, Indonesia. Environ Nat Resaources J. 2018;16(2):1–10.

Widyorini P, Shafrin KA, Wahyuningsih NE, Murwani R, Suhartono. Dengue hemorrhagic fever (DHF) cases in semarang city are related to air temperature, humidity, and rainfall. Adv Sci Lett. 2017;23(4):3283–7.

Xu Z, Bambrick H, Yakob L, Devine G, Frentiu FD, Marina R, et al. Using dengue epidemics and local weather in Bali, Indonesia to predict imported dengue in Australia. Environ Res [Internet]. 2019;175(May):213– 20. Available from: https://doi.org/10.1016/j.envres.2019.05.021

Zubaidah T, Ratodi M, Marlinae L. Pemanfaatan informasi iklim sebagai sinyal peringatan dini kasus DBD di Banjarbaru, Kalimantan Selatan. Vektora. 2016;8(No.2):99–106.

Arcari P, Tapper N, Pfueller S. Regional variability in relationships between climate and dengue/DHF in Indonesia. Singap J Trop Geogr. 2007;28(3):251–72.

Banu S, Guo Y, Hu W, Dale P, Mackenzie JS, Mengersen K, et al. Impacts of El Niño Southern Oscillation and Indian Ocean Dipole on dengue incidence in Bangladesh. Sci Rep [Internet]. 2015;5(August):1–9. Available from: http://dx.doi.org/10.1038/srep16105

Chuang TW, Chaves LF, Chen PJ. Effects of local and regional climatic fluctuations on dengue outbreaks in southern Taiwan. PLoS One. 2017;12(6):1–20.

Lowe R, Bailey TC, Stephenson DB, Graham RJ, Coelho CAS, Sá Carvalho M, et al. Spatiotemporal modelling of climate-sensitive disease risk: Towards an early warning system for dengue in Brazil. Comput Geosci [Internet]. 2011;37(3):371–81. Available from: http:// dx.doi.org/10.1016/j.cageo.2010.01.008

Colón-González FJ, Lake IR, Bentham G. Climate variability and dengue fever in warm and humid Mexico. Am J Trop Med Hyg. 2011;84(5):757–63.

Lowe R, Gasparrini A, Van Meerbeeck CJ, Lippi CA, Mahon R, Trotman AR, et al. Nonlinear and delayed impacts of climate on dengue risk in Barbados: A modelling study. PLoS Med. 2018;15(7):1–24.

Ortiz Bulto PL, Ridriguez AP, Valencia AR, Vega NiL, Gonzalez MD, Carrera AP. Assessment of Human Health Vulnerability to Climate Variability and Change in Cuba. Enveronmental Heal Perspect. 2006;114(12):1942–9.

Descloux E, Mangeas M, Menkes CE, Lengaigne M, Leroy A, Tehei T, et al. Climate-based models for understanding and forecasting dengue epidemics. PLoS Negl Trop Dis. 2012;6(2).

Tuladhar R, Singh A, Banjara MR, Gautam I, Dhimal M, Varma A, et al. Effect of meteorological factors on the seasonal prevalence of dengue vectors in upland hilly and lowland Terai regions of Nepal. Parasites and Vectors. 2019;12(1):1–16.

Stolerman LM, Maia PD, Nathan Kutz J. Forecasting dengue fever in Brazil: An assessment of climate conditions. PLoS One. 2019;14(8):1–16.

Hidayati R, Boer R, Koesmaryono Y, Kesumawati U. Penyusunan Metode Penentuan Indeks Kerawanan Wilayah dan Pemetaan Wilayah REntan Penyakit Demam Berdarah di Indonesia. Ekol Kesehat. 2009;8 No. 4:1066–76.

Hales S, de Wet N, Maindonald J, Woodward A. Potential effect of population and climate change of dengue distribution: an empirical model. Lancet. 2002;

Sopia, Suhartono, Wahyuningsih NE. Hubungan Kondisi Lingkungan Rumah dan Perilaku Keluarga dengan Kejadian Demam Berdarah Dengue Di Kabupaten Aceh Besar. J Kesehat Lingkung Indones. 2014;13(1):30–8.

Siriyasatien P, Chadsuthi S, Jampachaisri K, Kesorn K. Dengue epidemics prediction: A survey of the state-of-the-art based on data science processes. IEEE Access. 2018;6:53757–95.

Supari, Tangang F, Juneng L, Aldrianc E. Observed changes in extreme temperature and precipitation over Indonesia. Int J Climatol. 2016;

Mulsandi A, Mamenun M, Fitriano L, Hidayat R. Perbaikan Estimasi Curah Hujan Berbasis Data Satelit Dengan Memperhitungkan Faktor Pertumbuhan Awan. J Sains Teknol Modif Cuaca. 2020;20(2):67–78.

Dickin SK, Schuster-Wallace CJ, Elliott SJ. Developing a vulnerability mapping methodology: applying the water-associated disease index to dengue in Malaysia. PLoS One. 2013;8(5):1–11.

Acharya BK, Cao C, Xu M, Khanal L, Naeem S, Pandit S. Temporal variations and associated remotely sensed environmental variables of Dengue Fever in Chitwan District, Nepal. ISPRS Int J Geo-Information. 2018;7(278):1– 14.

Wang C, Jiang B, Fan J, Wang F, Qiyong L. A study of the dengue epidemic and meteorological factors in Guangzhou, China, by using a zero-inflated Poisson regression model. Asia Pacific J Public Heal. 2014;1:48– 57.

Supari, Tangang F, Salimun E, Aldrian E, Sopaheluwakan A, Juneng L. ENSO modulation of seasonal rainfall and extremes in Indonesia. Clim Dyn. 2017;22p.

Tjasyono B. Meteorologi Indonesia Volume I. Vol. I. Jakarta: Badan Meteorologi Klimatologi dan Geofisika; 2012.

Saji NH, Yamagata T. Possible impacts of Indian Ocean Dipole mode events on global climate. Clim Res. 2003;25(2):151–69.

CDC. Life Cycle of Aedes aegypti and Aedes albopictus Mosquitoes [Internet]. March. 2020 [cited 2020 Jul 7]. p. 1–2. Available from: https://www.cdc.gov/mosquitoes/about/life-cycles/aedes.html

Cazelles B, Chavez M, De Magny GC, Guégan JF, Hales S. Time-dependent spectral analysis of epidemiological time-series with wavelets. J R Soc Interface. 2007;4(15):625–36.

Piyatilake ITS, Perera SSN. Fuzzy Multidimensional Model to Cluster Dengue Risk in Sri Lanka. Biomed Res Int. 2020;2020.

Li C, Wang X, Wu X, Liu J, Ji D, Du J. Modeling and projection of dengue fever cases in Guangzhou based on variation of weather factors. Sci Total Environ [Internet]. 2017;605– 606(19):867–73. Available from: http://dx.doi.org/10.1016/j.scitotenv.2017.06.181

Published
2021-12-28
How to Cite
1.
Mamenun M, Koesmaryono Y, Hidayati R, Sopaheluwakan A, Dasanto B. Kemajuan Penelitian Pemodelan Prediksi Demam Berdarah Dengue menggunakan Faktor Iklim di Indonesia : A Systematic Literature Review. bpk [Internet]. 28Dec.2021 [cited 4May2024];49(4):231-46. Available from: http://ejournal2.litbang.kemkes.go.id/index.php/bpk/article/view/4762
Section
Articles