AKTIVITAS HIPOGLIKEMIK SNEDDS EKSTRAK ETANOL BUAH HARENDONG (Melastoma affine D.Don) PADA IKAN ZEBRA (Danio rerio) YANG DIINDUKSI ALOKSAN

  • Arnetta Novitalia Universitas Islam Indonesia
  • Isnatin Miladiyah Departemen Farmakologi, Fakultas Kedokteran, Universitas Islam Indonesia

Abstract

Diabetes melitus merupakan penyakit kronik dengan prevalensi yang tinggi di Indonesia dan diperkirakan akan terus mengalami peningkatan. Buah Harendong (Melastoma affine D.Don) mempunyai kandungan senyawa flavonoid berupa antosianin dan fenol yang berpotensi memiliki aktivitas hipoglikemik pada penderita diabetes melitus. Sediaan Self Nano-Emulsifying Drug Delivery System (SNEDDS) dapat meningkatkan ketersediaan hayati zat aktif senyawa sehingga memperbaiki efek terapetik senyawa tersebut. Tujuan penelitian ini adalah untuk mengetahui aktivitas hipoglikemik SNEDDS ekstrak etanol buah harendong pada ikan zebra. Ekstraksi buah harendong menggunakan metode maserasi dengan pelarut etanol 96%, ekstrak yang dihasilkan selanjutnya diformulasikan dalam sediaan SNEDDS dengan menambahkan kollisolv, tween 20 dan gliserin (2:6:1). Karakterisasi SNEDDS ekstrak etanol buah harendong dengan hasil ukuran partikel 77,8 nm, polydispersity index 0,123 D, zeta potensial -32,1 mV serta persen transmitan 74,567% telah memenuhi kriteria formulasi SNEDDS. Uji aktivitas hipoglikemik dengan menggunakan ikan zebra yang diinduksi aloksan 300mg selama 24 jam dan perendaman pada larutan glukosa 2% selama 7 hari. Pada penelitian ini terdapat 6 kelompok terdiri dari kelompok normal, kelompok kontrol negatif (tanpa perlakuan), kelompok kontrol positif (metformin 100 μM) dan kelompok perlakuan dengan variasi dosis kelompok H I (100 mg/2L SNEDDS), kelompok H II (200 mg/2L SNEDDS), kelompok H III ( 300 mg/2L SNEDDS).  Nilai rata-rata kadar glukosa darah puasa (KGDP) kelompok normal 70,9 ± 3,7 mg/dL; kelompok kontrol negatif 208,9 ± 23,2 mg/dL; kelompok kontrol positif 68,7 ± 4,3 mg/dL; kelompok H I 100mg/2L SNEDDS 92,8 ± 8,07 mg/dL; kelompok H II 200mg/2L SNEDDS 65,2 ± 2,2 mg/dL; kelompok H III 300mg/2L SNEDDS 60,7 ± 1,8 mg/dL. Sehingga aktivitas hipoglikemik SNEDDS ekstrak etanol buah harendong terdapat pada dosis SNEDDS 200 mg/dL SNEDDS dan 300 mg/dL SNEDDS.

 

Kata kunci: diabetes melitus, hipoglikemik, Melastoma affine D.Don, SNEDDS, ikan zebra

References

Alshamsan, A., Kazi, M., Badran, M. M., & Alanazi, F. K. (2018). Role of alternative lipid excipients in the design of self-nanoemulsifying formulations for fenofibrate: Characterization, in vitro dispersion, digestion and ex vivo gut permeation studies. Frontiers in Pharmacology, 9(6), 1–15. https://doi.org/10.3389/fphar.2018.01219

Avachat, A. M., & Patel, V. G. (2015). Self nanoemulsifying drug delivery system of stabilized ellagic acid-phospholipid complex with improved dissolution and permeability. Saudi Pharmaceutical Journal, 23(3), 276–289. https://doi.org/10.1016/j.jsps.2014.11.001

Benchoula, K., Khatib, A., Quzwain, F. M. C., Anuar, C., Mohamad, C., Mohd, W., Wan, A., Wahab, R. A., Ahmed, Q. U., Abdul, M., Saiman, M. Z., Alajmi, M. F., & El-seedi, H. (2019). Optimization of Hyperglycemic Induction in Zebrafish and Evaluation of Its Blood Glucose Level and Metabolite Fingerprint Treated with Psychotria malayana Jack Leaf Extract. Molecules, 24(1506), 1–22. https://doi.org/10.3390/molecules24081506

Capiotti, K. M., Junior, R. A., Kist, L. W., Bogo, M. R., Bonan, C. D., Souza, R., & Silva, D. (2014). Persistent Impaired Glucose Metabolism in a Zebrafish Hyperglicemia Model. Comparative Biochemistry and Physiology Part B : Biochemistry and Molecular Biology, 171(1), 58–65. https://doi.org/10.1016/j.cbpb.2014.03.005

Connaughton, V. P., Baker, C., Fonde, L., Gerardi, E., & Slack, C. (2016). Alternate Immersion in an External Glucose Solution Differentially Affects Blood Sugar Values in Older Versus Younger Zebrafish Adults. Zebrafish, 13(2), 87–94. https://doi.org/10.1089/zeb.2015.1155

Danaei, M., Dehghankhold, M., Ataei, S., Hasanzadeh Davarani, F., Javanmard, R., Dokhani, A., Khorasani, S., & Mozafari, M. R. (2018). Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics, 10(2), 1–17. https://doi.org/10.3390/pharmaceutics10020057

Dewi, A. P. (2019). Uji Aktivitas Antibakteri Ekstrak Daun Senduduk (Melastoma affine D.Don) Terhadap Staphylococcus Aureus. JOPS (Journal Of Pharmacy and Science), 3(1), 10–14. https://doi.org/10.36341/jops.v3i1.1100

Dhanani, T., Shah, S., Gajbhiye, N. A., & Kumar, S. (2017). Effect of extraction methods on yield, phytochemical constituents and antioxidant activity of Withania somnifera. Arabian Journal of Chemistry, 10, S1193–S1199. https://doi.org/10.1016/j.arabjc.2013.02.015

Gleeson, M., Connaughton, V., & Arneson, L. S. (2007). Induction of hyperglycaemia in zebrafish (Danio rerio) leads to morphological changes in the retina. Acta Diabetologica, 44(3), 157–163. https://doi.org/10.1007/s00592-007-0257-3

Honary, S., & Zahir, F. (2013). Effect of zeta potential on the properties of nano-drug delivery systems - A review (Part 1). Tropical Journal of Pharmaceutical Research, 12(2), 255–264. https://doi.org/10.4314/tjpr.v12i2.19

Hu, M., Xie, F., Zhang, S., Qi, B., & Li, Y. (2021). Effect of nanoemulsion particle size on the bioavailability and bioactivity of perilla oil in rats. Journal of Food Science, 86(1), 206–214. https://doi.org/10.1111/1750-3841.15537

IDF (International Diabetes Federation). (1955). International Diabetes Federation. In The Lancet, 266(6881), 34–137. https://doi.org/10.1016/S0140-6736(55)92135-8

Jorgens, K., Hillebrands, J. L., Hammes, H. P., & Kroll, J. (2012). Zebrafish: A model for understanding diabetic complications. Experimental and Clinical Endocrinology and Diabetes, 120(4), 186–187. https://doi.org/10.1055/s-0032-1304565

Kemenkes RI (Kementrian Kesehatan Republik Indonesia). (2020). Infodatin Diabetes Melitus. In pusat data dan informasi kementrian kesehatan RI.

Khoo, H. E., Azlan, A., Tang, S. T., & Lim, S. M. (2017). Anthocyanidins and anthocyanins: Colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food and Nutrition Research, 61(1), 1–17. https://doi.org/10.1080/16546628.2017.1361779

Kim, R. M., Jang, D. J., Kim, Y. C., Yoon, J. H., Min, K. A., Maeng, H. J., & Cho, K. H. (2018). Flurbiprofen-loaded solid SNEDDS preconcentrate for the enhanced solubility, in-vitro dissolution and bioavailability in rats. Pharmaceutics, 10(4). https://doi.org/10.3390/pharmaceutics10040247

Kusumowati, I. T. D., Melannisa, R., & Prasetyawan, A. (2014). Daya Antibakteri Ekstrak Etanol Daun Senggani (Melastoma affine D.Don). Biomedika, 6(2), 22–25. https://doi.org/10.23917/biomedika.v6i2.278

Les, F., Cásedas, G., Gómez, C., Moliner, C., Valero, M. S., & López, V. (2021). The role of anthocyanins as antidiabetic agents: from molecular mechanisms to in vivo and human studies. Journal of Physiology and Biochemistry, 77(1), 109–131. https://doi.org/10.1007/s13105-020-00739-z

Lotfy, M., Adeghate, J., Kalasz, H., Singh, J., & Adeghate, E. (2017). Chronic Complications of Diabetes Mellitus: A Mini Review. Current Diabetes Reviews, 13(1), 3–10. https://doi.org/10.2174/1573399812666151016101622

Morakul, B. (2020). Self-nanoemulsifying drug delivery systems (SNEDDS): An advancement technology for oral drug delivery. Pharmaceutical Sciences Asia, 47(3), 205–220. https://doi.org/10.29090/psa.2020.03.019.0121

Morsy, S. M. I. (2014). Role of Surfactants in Nanotechnology and Their Applications. International Journal of Current Microbiology and Applied Sciences, 3(5), 237–260. https://doi.org/10.1007/978-3-319-13596-0_10

Nam, Y. H., Hong, B. N., Rodriguez, I., Ji, M. G., Kim, K., Kim, U. J., & Kang, T. H. (2015). Synergistic Potentials of Coffee on Injured Pancreatic Islets and Insulin Action via KATP Channel Blocking in Zebrafish. Journal of Agricultural and Food Chemistry, 63(23), 5612–5621. https://doi.org/10.1021/acs.jafc.5b00027

Narayan, R., Habibuddin, M., & Ramesh, D. (2015). Design , optimization and evaluation of glipizide solid self-nanoemulsifying drug delivery for enhanced solubility and dissolution. Saudi Pharmaceutical Journal, 1(24), 1–13. https://doi.org/10.1016/j.jsps.2015.01.024

Nugroho, B. H., & Sari, N. P. (2018). Formulation of Self Nano Emulsifiying Drug Delivery System (SNEDDS) Karamunting Leaf Extract (Rhodomyrtus tomentosa (Ait.) Hassk). Jurnal Ilmiah Farmasi, 14(1), 1–8. https://doi.org/10.20885/jif.vol14.iss1.art01

Okur, M. E., Karantas, I. D., & Siafaka, P. I. (2017). Diabetes Mellitus : A Review on Pathophysiology , Current Status of Oral Medications and Future Perspectives. Acta Pharmaceutica Sciencia, 55(1), 61–82. https://doi.org/10.23893/1307-2080.APS.0555

Safrida, Khairil, & Fardinita, F. (2020). Antihyperglycemic and Antioxidant Activity of Nanoemulsion Extracts of M. affine D.Don Leaves in Alloxan-Induced Rat. Journal of Tropical Biodiversity and Biotechnology, 5(3), 167–171. https://doi.org/10.22146/jtbb.56701

Sasaki, R., Nishimura, N., Hoshino, H., Isa, Y., Kadowaki, M., Ichi, T., Tanaka, A., Nishiumi, S., Fukuda, I., Ashida, H., Horio, F., & Tsuda, T. (2007). Cyanidin 3-glucoside ameliorates hyperglycemia and insulin sensitivity due to downregulation of retinol binding protein 4 expression in diabetic mice. Biochemical Pharmacology, 74(11), 1619–1627. https://doi.org/10.1016/j.bcp.2007.08.008

Seymour, E. M., Tanone, I. I., Urcuyo-Llanes, D. E., Lewis, S. K., Kirakosyan, A., Kondoleon, M. G., Kaufman, P. B., & Bolling, S. F. (2011). Blueberry intake alters skeletal muscle and adipose tissue peroxisome proliferator-activated receptor activity and reduces insulin resistance in obese rats. Journal of Medicinal Food, 14(12), 1511–1518. https://doi.org/10.1089/jmf.2010.0292

Sharma, A. K., Garg, T., Goyal, A. K., & Rath, G. (2016). Role of microemuslsions in advanced drug delivery. Artificial Cells, Nanomedicine and Biotechnology, 44(4), 1177–1185. https://doi.org/10.3109/21691401.2015.1012261

Shin, E., Hong, B. N., & Kang, T. H. (2012). An optimal establishment of an acute hyperglycemia zebrafish model. African Journal of Pharmacy and Pharmacology, 6(42), 2922–2928. https://doi.org/10.5897/ajpp12.327

Solverson, P. (2020). Anthocyanin Bioactivity in Obesity and Diabetes: The Essential Role of Glucose Transporters in the Gut and Periphery. Cells, 9(2515), 1–21. https://doi.org/10.3390/cells9112515

Syafitri, E. N., Bintang, M., & Falah, S. (2014). Kandungan Fitokimia , Total Fenol , dan Total Flavonoid Ekstrak Buah Harendong (Melastoma affine D.Don). Current Biochemistry, 1(3), 105–115.

Tzanova, M., Atanasov, V., Yaneva, Z., Ivanova, D., & Dinev, T. (2020). Selectivity of current extraction techniques for flavonoids from plant materials. Processes, 8(10), 1–30. https://doi.org/10.3390/pr8101222

Winarti, L., Suwaldi, Martien, R., & Hakim, L. (2016). Formulation of self-nanoemulsifying drug delivery system of Bovine serum albumin using HLB (Hydrophilic-Lypophilic Balance) approach. Indonesian Journal of Pharmacy, 27(3), 117–127. https://doi.org/10.14499/indonesianjpharm27iss3pp117

Zang, L., Maddison, L. A., & Chen, W. (2018). Zebrafish as a model for obesity and diabetes. Frontiers in Cell and Developmental Biology, 6(91), 1–13. https://doi.org/10.3389/fcell.2018.00091

Published
2022-07-01