STUDI IN SILICO PENGHAMBATAN AKTIVASI TLR2 EKSTRAK ETANOL DAUN SEMANGGI (Marsilea crenata Presl.)

  • Burhan Ma'arif UIN Maulana Malik Ibrahim
  • Destiya Argo Pamuji Fihuda Program Studi Farmasi, Fakultas Kedokteran dan Ilmu Kesehatan, UIN Maulana Malik Ibrahim, Malang, Jawa Timur, Indonesia
  • Faisal Akhmal Muslikh Magister Ilmu Farmasi, Departemen Ilmu Kefarmasian, Fakultas Farmasi, Universitas Airlangga, Surabaya, Jawa Timur, Indonesia
  • Sadli Syarifuddin Program Studi Farmasi, Fakultas Kedokteran dan Ilmu Kesehatan, UIN Maulana Malik Ibrahim, Malang, Jawa Timur, Indonesia
  • Begum Fauziyah Program Studi Farmasi, Fakultas Kedokteran dan Ilmu Kesehatan, UIN Maulana Malik Ibrahim, Malang, Jawa Timur, Indonesia
  • Dewi Perwito Sari Program Studi Farmasi, Fakultas Sains dan Kesehatan, Universitas PGRI Adi Buana, Surabaya
  • Mangestuti Agil Departemen Ilmu Farmasi, Fakultas Farmasi, Universitas Airlangga, Surabaya
Keywords: Marsilea crenata Presl., Parkinson Disease, neuroinflamasi, in silico

Abstract

Neuroinflamasi dapat menyebabkan Parkinson Disease (PD), dengan salah satu mekanismenya adalah aktivasi berlebih toll-like receptor 2 (TLR2) akibat abnormalitas dan agregasi α-synuclein. Pada penelitian sebelumnya, daun semanggi (Marsilea crenata Presl.) terbukti menghambat progresivitas neuroinflamasi melalui jalur estrogen-receptor (ER) dependent. Penelitian ini bertujuan untuk memprediksi efek antineuroinflamasi daun semanggi pada jalur penghambatan aktivasi TLR2 (3A7B) dengan studi in silico. Senyawa hasil metabolite profiling sekunder dari ekstrak etanol 96% daun semanggi dipreparasi dengan ChemDraw Ultra 12.0, kemudian dilihat sifat farmakokinetik dan farmakodinamiknya dengan webtool SwissADME. Optimasi geometri pada senyawa dilakukan menggunakan Avogadro 1.0.1 dan molecular docking senyawa terhadap reseptor 3A7B dilakukan menggunakan Autodock vina (PyRx 0.8). Tahap visualisasi interaksi dilakukan dengan Biovia Discover Studio 2021, sedangkan nilai toksisitas senyawa dianalisis menggunakan ProTox II online tool. Hasil penelitian menunjukkan terdapat empat senyawa yang memenuhi kriteria farmakokinetik, farmakodinamik, toksisitas, serta mempunyai kemiripan dengan native ligand N-acetyl-D-glucosamine. Oleh karena itu, ekstrak etanol 96% daun semanggi diprediksi memiliki potensi sebagai penghambat progresifitas PD dengan mekanisme antineuroinflamasi.

References

Ariyanti, H., & Apriliana, E. (2016). Pengaruh Fitoestrogen terhadap Gejala Menopause. Jurnal Majority, 5(5), 1–5.

Balestrino, R., & Schapira, A. H. V. (2020). Parkinson disease. European Journal of Neurology, 27(1), 27–42. https://doi.org/10.1111/ENE.14108

Biben. (2012). Fitoestrogen: Khasiat terhadap Sistem Reproduksi, Non Reproduksi dan Keamanan Penggunaannya. Seminar Ilmiah Nasional Estrogen Sebagai Sumber Hormon Alami.

Borrello, S., Nicolo, C., Delogu, G., Pandolfi, F., & Ria’, F. (2011). TLR2: A Crossroads between Infections and Autoimmunity? In International Journal of Immunopathy and Pharmacology (Vol. 24, Issue 3).

Buathong, N., Poonyachoti, S., & Deachapunya, C. (2015). Isoflavone Genistein Modulates the Protein Expression of Toll-like Receptors in Cancerous Human Endometrial Cells. Journal of the Medical Association of Thailand = Chotmaihet Thangphaet. Oct;98 Suppl 9:S31-8. PMID: 26817207.

Cario, E. (2008). Barrier-protective function of intestinal epithelial toll-like receptor 2. Mucosal Immunology, 1(November), 62–66. https://doi.org/10.1038/mi.2008.47

Chen, W. W., Zhang, X., & Huang, W. J. (2016). Role of neuroinflammation in neurodegenerative diseases (Review). Molecular Medicine Reports, 13(4), 3391–3396. https://doi.org/10.3892/mmr.2016.4948

Cherry, J. D., Olschowka, J. A., & O’Banion, M. K. (2014). Neuroinflammation and M2 microglia: the good, the bad, and the inflamed. Journal of Neuroinflammation, 11. https://doi.org/10.1186/1742-2094-11-98

Cui, L., Zahedi, P., Saraceno, J., Bristow, R., Jaffray, D., & Allen, C. (2013). Neoplastic cell response to tiopronin-coated gold nanoparticles. Nanomedicine: Nanotechnology, Biology and Medicine, 9(2), 264–273. https://doi.org/10.1016/J.NANO.2012.05.016

Defitiana, W., & Sanjaya, I. G. M. (2020). Studi Komputatif Jalur Sintesis Asam Elagat dari Asam Galat. UNESA Journal of Chemistry, 9(1), 83–90.

Dzamko, N., Gysbers, A., Perera, G., Bahar, A., Shankar, A., Gao, J., Fu, Y. H., & Halliday, G. M. (2017). Toll-like receptor 2 is increased in neurons in Parkinson’s disease brain and may contribute to alpha-synuclein pathology. Acta Neuropathologica, 133(2), 303–319. https://doi.org/10.1007/s00401-016-1648-8

Ekins, S., Mestres, J., & Testa, B. (2007). In silico pharmacology for drug discovery: applications to targets and beyond. British Journal of Pharmacology, 152, 21–37. https://doi.org/10.1038/sj.bjp.0707306

Engler-Chiurazzi, E. B., Brown, C. M., Povroznik, J. M., & Simpkins, J. W. (2017). Estrogens as neuroprotectants: Estrogenic actions in the context of cognitive aging and brain injury. Progress in Neurobiology, 157, 188–211. https://doi.org/10.1016/J.PNEUROBIO.2015.12.008

Geeta, R. (2014). Novel Therapeutic Targets in Neuroinflammation and Neuropathic Pain. Inflammation and Cell Signaling, 1(3). https://doi.org/10.14800/ICS.111

Gelosa, P., Colazzo, F., Tremoli, E., Sironi, L., & Castiglioni, L. (2017). Cysteinyl Leukotrienes as Potential Pharmacological Targets for Cerebral Diseases. Mediators of Inflammation, 2017. https://doi.org/10.1155/2017/3454212

Hernandez-Lemus, E., Michael Ogundele, O., Mohamed El-Wazir, Y., Li, Q., Yang, H., Gao, W., & Xiong, Y. (2017). Citation: Inhibition of Toll-Like Receptor Signaling as a Promising Therapy for Inflammatory Diseases: A Journey from Molecular to Nano Therapeutics. Frontiers in Physiology | Www.Frontiersin.Org, 1, 508. https://doi.org/10.3389/fphys.2017.00508

Hwang, S. Y., Shin, J. H., Hwang, J. S., Kim, S. Y., Shin, J. A., Oh, E. S., Oh, S., Kim, J. Bin, Lee, J. K., & Han, I. O. (2010). Glucosamine exerts a neuroprotective effect via suppression of inflammation in rat brain ischemia/reperfusion injury. Glia, 58(15), 1881–1892. https://doi.org/10.1002/glia.21058

Jejurikar, B. L., & Rohane, S. H. (2021). Drug Designing in Discovery Studio. Asian Journal of Research in Chemistry, 14(2), 135–138.

Kwon, S., Iba, M., Masliah, E., & Kim, C. (2019). Targeting Microglial and Neuronal Toll-like Receptor 2 in Synucleinopathies. Experimental Neurobiology, 28(5), 547. https://doi.org/10.5607/EN.2019.28.5.547

Lewis, P., & Spillane, J. (2018). Neurodegenerative Disease 1st Edition (1st ed.). Cambridge:Academic Press.

Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (2001). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 46(1–3), 3–26. https://doi.org/10.1016/S0169-409X(00)00129-0

Ma’arif, B. (2020). Aktivitas Antineuroinflamasi Ekstrak dan Fraksi Daun Semanggi (M. crenata Presl.) terhadap sel Mikroglia HMC3. Universitas Airlangga.

Ma’arif, B., Agil, M., & Laswati, H. (2020). The enhancement of Arg1 and activated ERβ expression in microglia HMC3 by induction of 96% ethanol extract of Marsilea crenata Presl. leaves. Journal of Basic and Clinical Physiology and Pharmacology, 30(6). https://doi.org/10.1515/JBCPP-2019-0284

Makatita, F. A., Wardhani, R., & Nuraini. (2020). Riset in Silico Dalam Pengembangan Sains Di Bidang Pendidikan, Studi Kasus: Analisis Potensi Cendana Sebagai Agen Anti-Aging. Jurnal ABDI, 2(1), 33–39.

Martin, Y. C. (2005). A Bioavailability Score. Journal of Medicinal Chemistry, 48(9), 3164–3170. https://doi.org/https://doi.org/10.1021/jm0492002

Mizuno, T. (2015). Neuron-microglia interactions in neuroinflammation. Clinical & Experimental Neuroimmunology, 6, 225–231.

Muchtaridi, Dermawan, D., & Yusuf, M. (2018). Molecular docking, 3D Structure-Based Pharmacophore Modeling, and ADME Prediction of Alpha Mangostin and Its Derivatives Against Estrogen Receptor Alpha. Journal of Young Pharmacists, 10(2), 252–259.

Nurmianti, L., & Gusmarwani, S. (2020). Penentuan Lethal Dose 50% (LD50) Pestisida Nabati dari Campuran Buah Bintaro, Sereh, Bawang Putih, Lengkuas. Jurnal Inovasi Proses, 5(1).

Penn, D. (2002). Major Histocompability Complex (MHC). In Encyclopedia of Life Sciences. Macmillan Publishers Ltd: Nature Publishing Group.

Prieto-Martínez, F. D., Arciniega, M., & Medina-Franco, J. L. (2018). Acoplamiento Molecular: Avances Recientes y Retos. TIP Revista Especializada En Ciencias Químico-Biológicas, 21, 65–87. https://doi.org/10.22201/fesz.23958723e.2018.0.143

Rachmania, R. A., Supandi, & Cristina, F. A. D. (2016). Analisis Penambatan Molekul Senyawa Flavonoid Buah Mahkota Dewa (Phaleria macrocarpa (Scheff.) Boerl.) pada Reseptor α-Glukosidase sebagai Antidiabetes. Jurnal Pharmacy, 13(2), 239–251.

Suharti. (2020). Patofisiologi Penurunan Kognitif pada Penyakit Parkinson. UMI Medical Journal, 5(1), 1–11. http://jurnal.fk.umi.ac.id/index.php/umimedicaljournal/article/view/76/71

Suhud, F. (2015). Uji Aktivitas In-silico Senyawa Baru 1-Benzil-3-benzoilurea Induk dan Tersubstitusi sebagai Agen Antiproliferatif. Jurnal Farmasi Indonesia, 7(4), 245–251.

Supandi, & Merdekawati, F. (2018). In Silico Study of Pyrazolylaminoquinazoline Toxicity by Lazar, Protox and Admet Predictor. Journal of Applied Pharmaceutical Science, 8(9), 119–120. https://doi.org/DOI: 10.7324/JAPS.2018.8918

Syahputra, G., Ambarsari, L., & Sumaryada, T. (2014). Simulasi Docking Kurkumin Enol, Bismetoksikurkumin Dan Analognya Sebagai Inhibitor Enzim12-Lipoksigenase. Jurnal Biofisika, 10(1), 55–67.

Syamsudin, T. (2015). Penyakit Parkinson. In T. Syamsuddin, Subagya, & M. Akbar (Eds.), Panduan Tatalaksana Penyakit Parkinson dan Gangguan Gerak Lainnya. Kelompok Studi Movement Disorder (pp. 9–31). Perhimpunan Dokter Spesialis Saraf Indonesia.

Villa, A., Vegeto, E., Poletti, A., & Maggi, A. (2016). Estrogens, Neuroinflammation, and Neurodegeneration. https://doi.org/10.1210/er.2016-1007

Yulianti, A. B., Sumarsono, S. H., Ridwan, A., & Yusuf, A. T. (2015). Hubungan Reactive Oxygen Species (ROS), Superoxide Dismutase (SOD) dengan Protein α-Sinuklein-Larut Air pada Batang Otak Tikus yang Diinduksi Rotenon. Global Medical and Helath Communication, 3(2). https://doi.org/https://doi.org/10.29313/gmhc.v3i2.1508

Published
2022-07-01