Hubungan Frekuensi Gen Knock-Down Resistance (KDR) V1016G, V410L, dan F1534C dengan Tingkat Resistensi Populasi Aedes aegypti di Denpasar, Bali

  • Erly Sintya Department of Physiology and Biochemistry, Faculty of Medicine and Health Sciences, Warmadewa University
  • Kartika Sari Department of Physiology and Biochemistry, Faculty of Medicine and Health Sciences, Warmadewa University
  • Ni Wayan Widhidewi Department of Microbiology anf Parasitology, Faculty of Medicine and Health Sciences, Warmadewa University
  • Ni Made Hegard Sukmawati Department of Community and Preventive Medicine, Faculty of Medicine and Health Sciences, Warmadewa University
  • Ni Putu Diah Witari Department of Anatomy and Histology, Faculty of Medicine and Health Sciences, Warmadewa University
  • Tangking Widarsa Department of Community and Preventive Medicine, Faculty of Medicine and Health Sciences, Warmadewa University
Keywords: insecticide resistance, KnockDown resistance, Aedes aegypti

Abstract

 ABSTRACT

Insecticides are used to reduce the number of Aedes aegypti mosquitoes, a vector of the dengue virus that causes dengue hemorrhagic fever in Indonesia, including in Bali. However, in recent years, the resistance of the Ae. aegypti mosquito to insecticides has been reported in Bali. In addition, Ae. aegypti is also identified to be resistant to several types of insecticides whose resistance mechanism is not yet clear. Several studies have stated that the KDR genes are one of the causes of resistance to pyrethroid insecticides. Therefore, a study was conducted to determine the frequency of the KDR genes in the Ae. aegypti population in Denpasar, Bali which had been previously shown resistance to permethrin (type of pyrethroid). Forty-three females Ae. aegypti specimens from bioassay testing using permethrin stored in tubes containing 100% ethanol were used in this study. Each mosquito is put in a different tube. The mosquito DNA was then extracted. Three KDR genes, V1016G, V410L, and F1534C, were analyzed using the quantitative-PCR melt curve method at the Biomolecular Laboratory, FKIK Unwar. In this study, the mutation frequency of 1016G was 98%, 410L was 50%, and 1534C was 3.4%. The 410L mutant gene was shared by all specimens, although only in one allele (heterozygous). Of the 43 specimens, 39 had homozygous mutant V1016G, heterozygous V410L, and wild typehomozygous F1534C. It indicated that the frequency of the 1016G and 410L mutant genes is quite high, while the 1534C gene is low. The combination of the KDR 1016G and 410L genes was the most dominant found in permethrin-resistant Ae. aegypti specimens. Therefore, it is assumed that these two KDR genes play a role in forming permethrin resistance in Ae. aegypti.

ABSTRAK

Insektisida digunakan untuk menurunkan jumlah nyamuk Aedes aegypti yang merupakan vektor virus dengue penyebab penyakit demam berdarah dengue di Indonesia, termasuk di Bali. Namun, dalam beberapa tahun terakhir, resistensi nyamuk Ae. aegypti terhadap insektisida dilaporkan sudah terjadi di Bali. Selain itu, Ae. aegypti juga dilaporkan resisten terhadap beberapa jenis insektisida yang mekanisme terjadinya resistensi belum diketahui. Beberapa penelitian menyebutkan bahwa gen KDR menjadi salah satu penyebab terjadinya mekanisme resistensi terhadap insektisida golongan peritroid. Oleh sebab itu, dilakukan penelitian untuk mengetahui frekuensi gen KDR pada populasi Ae. aegypti di Denpasar, Bali yang sebelumnya telah terbukti memiliki resistensi permetrin (insektisida golongan peritroid). Sebanyak 43 spesimen Ae. aegypti betina hasil dari pengujian bioassay yang tersimpan dalam tabung yang berisi etanol 100% digunakan dalam penelitian ini. Tiap nyamuk dimasukkan dalam tabung yang berbeda. Selanjutnya dilakukan ekstraksi DNA nyamuk. Tiga jenis gen KDR, yaitu V1016G, V410L, and F1534C, dianalisis dengan metode quantitative-PCR melt curve di Laboratorium Biomolekuler FKIK Unwar. Dalam penelitian ini ditemukan frekuensi mutasi 1016G sebesar 98%, 410L 50%, dan 1534C sebesar 3,4%. gen mutan 410L dimiliki oleh seluruh spesimen walaupun hanya pada salah satu alel (heterozigot). Dari 43 spesimen yang diteliti, terdapat 39 spesimen yang memiliki profil genotip V1016G homosigot mutan, V410L heterosigot, dan F1534C homosigot wild type. Sehingga dapat disimpulkan bahwa frekuensi gen mutan 1016G dan 410L cukup tinggi, sedangkan gen 1534C rendah. Kombinasi gen KDR  1016G dan 410L paling dominan ditemukan pada spesimen Ae. aegypti resisten permetrin. Kedua gen KDR diasumsikan berperan dalam pembentukan resistensi permetrin pada Ae. aegypti.

 

References

Word Health Organization. Global Plan for Insecticide Resistance Management in Malaria Vectors. (Word Health Organization, ed.). Word Health Organization; 2012.

World Health Organization. DENGUE GUIDELINES FOR DIAGNOSIS, TREATMENT, PREVENTION AND CONTROL TREATMENT, PREVENTION AND CONTROL TREATMENT, PREVENTION AND CONTROL. World Health Organization; 2009.

Masyeni S, Yohan B, Somia IKA, Myint KSA, Sasmono RT. Dengue infection in international travellers visiting Bali, Indonesia. J Travel Med. 2018;25(1):1-7. doi:10.1093/jtm/tay061

Fukusumi M, Arashiro T, Arima Y, et al. Dengue Sentinel Traveler Surveillance: Monthly and Yearly Notification Trends among Japanese Travelers, 2006–2014. PLoS Negl Trop Dis. 2016;10(8):e0004924. doi:10.1371/JOURNAL.PNTD.0004924

Dhewantara PW, Marina R, Puspita T, et al. Spatial and temporal variation of dengue incidence in the island of Bali, Indonesia: An ecological study. Travel Med Infect Dis. 2019;32:101437. doi:10.1016/J.TMAID.2019.06.008

Shukla R, Ramasamy V, Shanmugam RK, Ahuja R, Khanna N. Antibody-Dependent Enhancement: A Challenge for Developing a Safe Dengue Vaccine. Front Cell Infect Microbiol. 2020;10:572681. doi:10.3389/FCIMB.2020.572681

Valles S, Koehler P. Insecticides Used in the Urban Environment: Mode of Action. University of Florida Cooperative Extension Service, Institute of Food and Agriculture Sciences; 1997.

Della Vechia JF, Van Leeuwen T, Rossi GD, Andrade DJ. The role of detoxification enzymes in the susceptibility of Brevipalpus californicus exposed to acaricide and insecticide mixtures. Pestic Biochem Physiol. 2021;175:104855. doi:10.1016/j.pestbp.2021.104855

Zhou D, Liu X, Sun Y, Ma L, Shen B, Zhu C. Genomic analysis of detoxification supergene families in the mosquito Anopheles sinensis. PLoS One. 2015;10(11):e0143387. doi:10.1371/journal.pone.0143387

Sayono S, Hidayati APN, Fahri S, et al. Distribution of voltage-gated sodium channel (NAV) alleles among the aedes aegypti populations in central Java province and its aociation with resistance to pyrethroid insecticides. PLoS One. 2016;11(3):e0150577. doi:10.1371/journal.pone.0150577

Wuliandari JR, Lee SF, White VL, Tantowijoyo W, Hoffmann AA, Endersby-Harshman NM. Association between three mutations, F1565C, V1023G and S996P, in the voltage-sensitive sodium channel gene and knockdown resistance in aedes aegypti from yogyakarta, Indonesia. Insects. 2015;6(3):658-685. doi:10.3390/insects6030658

Saavedra-Rodriguez K, Maloof FV, Campbell CL, et al. Parallel evolution of vgsc mutations at domains IS6, IIS6 and IIIS6 in pyrethroid resistant Aedes aegypti from Mexico. Sci Rep. 2018;8(1):12. doi:10.1038/s41598-018-25222-0

Dong K, Du Y, Rinkevich F, et al. Molecular biology of insect sodium channels and pyrethroid resistance. Insect Biochem Mol Biol. 2014;50(1):1-17. doi:10.1016/j.ibmb.2014.03.012

Soderlund DM. Pyrethroids, knockdown resistance and sodium channels. In: Pest Management Science. Vol 64. John Wiley & Sons, Ltd; 2008:610-616. doi:10.1002/ps.1574

Marcombe S, Fustec B, Cattel J, et al. Distribution of insecticide resistance and mechanisms involved in the arbovirus vector aedes aegypti in laos and implication for vector control. PLoS Negl Trop Dis. 2019;13(12):1-22. doi:10.1371/JOURNAL.PNTD.0007852

Estep AS, Sanscrainte ND, Waits CM, et al. Quantification of permethrin resistance and kdr alleles in Florida strains of Aedes aegypti (L.) and Aedes albopictus (Skuse). PLoS Negl Trop Dis. 2018;12(10):e0006544. doi:10.1371/journal.pntd.0006544

Fan Y, O’grady P, Yoshimizu M, Ponlawat A, Kaufmanid PE, Scott JG. Evidence for both sequential mutations and recombination in the evolution of kdr alleles in aedes Aegypti. PLoS Negl Trop Dis. 2020;14(4):1-22. doi:10.1371/journal.pntd.0008154

Saavedra-Rodriguez K, Urdaneta-Marquez L, Rajatileka S, et al. A mutation in the voltage-gated sodium channel gene associated with pyrethroid resistance in Latin American Aedes aegypti. Insect Mol Biol. 2007;16(6):785-798. doi:10.1111/j.1365-2583.2007.00774.x

Wuliandari JR. KNOCKDOWN RESISTANCE IN THE DENGUE VECTOR Aedes Aegypti AND ITS IMPLICATIONS FOR Wolbachia Aedes Aegypti TRIALS.; 2019.

Chang C, Shen WK, Wang TT, Lin YH, Hsu EL, Dai SM. A novel amino acid substitution in a voltage-gated sodium channel is associated with knockdown resistance to permethrin in Aedes aegypti. Insect Biochem Mol Biol. 2009;39(4):272-278. doi:10.1016/j.ibmb.2009.01.001

Wuliandari JR, Hoffmann AA, Tantowijoyo W, Endersby-Harshman NM. Frequency of kdr mutations in the voltage-sensitive sodium channel (V SSC ) gene in Aedes aegypti from Yogyakarta and implications for Wolbachia-infected mosquito trials. Parasit Vectors. 2020;13(429):1-15. doi:10.1186/s13071-020-04304-x

Zuharah WF, Sufian M. The discovery of a novel knockdown resistance (kdr) mutation A1007G on Aedes aegypti (Diptera: Culicidae) from Malaysia. Sci Rep. 2021;11(1):5180. doi:10.1038/s41598-021-84669-w

Sombié A, Saiki E, Yaméogo F, et al. High frequencies of F1534C and V1016I kdr mutations and association with pyrethroid resistance in Aedes aegypti from Somgandé (Ouagadougou), Burkina Faso. Trop Med Health. 2019;47(2):1-8. doi:10.1186/s41182-018-0134-5

Schmidt TL, van Rooyen AR, Chung J, et al. Tracking genetic invasions: Genome-wide single nucleotide polymorphisms reveal the source of pyrethroid-resistant Aedes aegypti (yellow fever mosquito) incursions at international ports. Evol Appl. 2019;12(6):1136-1146. doi:10.1111/eva.12787

Melo Costa M, Campos KB, Brito LP, et al. Kdr genotyping in Aedes aegypti from Brazil on a nation-wide scale from 2017 to 2018. Sci Rep. 2020;10(1):1-12. doi:10.1038/s41598-020-70029-7

Konan LY, Oumbouke WA, Silué UG, et al. Insecticide Resistance Patterns and Mechanisms in Aedes aegypti (Diptera: Culicidae) Populations Across Abidjan, Côte d’Ivoire Reveal Emergent Pyrethroid Resistance. Badolo A, ed. J Med Entomol. April 2021. doi:10.1093/jme/tjab045

Ayres CFJ, Seixas G, Borrego S, et al. The V410L knockdown resistance mutation occurs in island and continental populations of Aedes aegypti in West and Central Africa. PLoS Negl Trop Dis. 2020;14(5):1-12. doi:10.1371/journal.pntd.0008216

Ong O, Rasic G, Dunbar M, Vazquez-Prokopec G, Manrique-Saide P, Devine G. THE RELATIONSHIP BETWEEN KNOCK-DOWN RESISTANCE (KDR) MUTATIONS METOFLUTHRIN INSECTICIDE TREATMENT IN MEXICO. Am J Trop Med Hyg. 2018;99(4):44-44.

Yanola J, Somboon P, Walton C, Nachaiwieng W, Somwang P, Prapanthadara L. High-throughput assays for detection of the F1534C mutation in the voltage-gated sodium channel gene in permethrin-resistant Aedes aegypti and the distribution of this mutation throughout Thailand. Trop Med Int Heal. 2011;16(4):501-509. doi:10.1111/J.1365-3156.2011.02725.X

Al-Amin HM, Johora FT, Irish SR, et al. Insecticide resistance status of Aedes aegypti in Bangladesh. Parasites and Vectors. 2020;13(1):1-15. doi:10.1186/s13071-020-04503-6

Bisset J, Rodriguez M, Mccall PJ, et al. A mutation in the voltage-gated sodium channel gene associated with pyrethroid resistance in Latin American Aedes aegypti. 2007;16(October):785-798.

Zardkoohi A, Castañeda D, Lol JC, et al. Co-occurrence of kdr Mutations V1016I and F1534C and Its Association with Phenotypic Resistance to Pyrethroids in Aedes aegypti (Diptera: Culicidae) Populations from Costa Rica. J Med Entomol. 2020;57(3):830-836. doi:10.1093/jme/tjz241

Kementerian Kesehatan Republik Indonesia. Technical Guideline for Implementing Mosquito Larval Source Reduction (PSN 3M‑Plus), and 1 House 1 Mosquito Larval Inspector. Jakarta: Kementerian Kesehatan RI; 2016.

Fitzpatrick C, Haines A, Bangert M, Farlow A, Hemingway J, Velayudhan R. An economic evaluation of vector control in the age of a dengue vaccine. PLoS Negl Trop Dis. 2017;11(8):e0005785. doi:10.1371/journal.pntd.0005785

Kasai S, Caputo B, Tsunoda T, et al. First detection of a Vssc allele V1016G conferring a high level of insecticide resistance in Aedes albopictus collected from Europe (Italy) and Asia (Vietnam), 2016: A new emerging threat to controlling arboviral diseases. Eurosurveillance. 2019;24(5):1700847. doi:10.2807/1560-7917.ES.2019.24.5.1700847

Hamid PH, Ninditya VI, Prastowo J, Haryanto A, Taubert A, Hermosilla C. Current Status of Aedes aegypti Insecticide Resistance Development from Banjarmasin, Kalimantan, Indonesia. Biomed Res Int. 2018;2018. doi:10.1155/2018/1735358

Hamid PH, Ninditya VI, Ghiffari & A, Taubert & A, Hermosilla & C. The V1016G mutation of the voltage-gated sodium channel (VGSC) gene contributes to the insecticide resistance of Aedes aegypti from Makassar, Indonesia. Parasitol Res. 2020;119:2075-2083. doi:10.1007/s00436-020-06720-5

Hamid PH, Prastowo J, Widyasari A, Taubert A, Hermosilla C. Knockdown resistance (kdr) of the voltage-gated sodium channel gene of Aedes aegypti population in Denpasar, Bali, Indonesia. Parasites and Vectors. 2017;10(1):1-9. doi:10.1186/s13071-017-2215-4

Published
2022-01-07
How to Cite
Sintya, E., Sari, K., Widhidewi, N. W., Sukmawati, N. M., Witari, N. P., & Widarsa, T. (2022). Hubungan Frekuensi Gen Knock-Down Resistance (KDR) V1016G, V410L, dan F1534C dengan Tingkat Resistensi Populasi Aedes aegypti di Denpasar, Bali. Jurnal Vektor Penyakit, 15(2), 73-82. https://doi.org/10.22435/vektorp.v15i2.4907