Efektivitas Tablet Bacillus thuringiensis H-14 Isolat Salatiga terhadap Jentik Aedes aegypti pada Dua Sumber Air yang Berbeda

  • Arum Triyas Wardani Balai Besar Penelitian dan Pengembangan Vektor dan Reservoir Penyakit Salatiga,Jl. Hasanudin No.123 Salatiga 50721, Jawa Tengah, Indonesia
  • RA. Wigati Balai Besar Penelitian dan Pengembangan Vektor dan Reservoir Penyakit Salatiga,Jl. Hasanudin No.123 Salatiga 50721, Jawa Tengah, Indonesia
  • Esti Rahardianingtyas Balai Besar Penelitian dan Pengembangan Vektor dan Reservoir Penyakit Salatiga,Jl. Hasanudin No.123 Salatiga 50721, Jawa Tengah, Indonesia
  • Rendro Wianto Balai Besar Penelitian dan Pengembangan Vektor dan Reservoir Penyakit Salatiga,Jl. Hasanudin No.123 Salatiga 50721, Jawa Tengah, Indonesia
  • Arief Nugroho Balai Besar Penelitian dan Pengembangan Vektor dan Reservoir Penyakit Salatiga,Jl. Hasanudin No.123 Salatiga 50721, Jawa Tengah, Indonesia
Keywords: Bacillus thuringiensis H-14, Aedes aegypti, tablet, water source


Dengue Hemorrhagic Fever (DHF) is a vector-borne disease that is still a health problem in Indonesia. One of the DHF control effort is to control the larvae of the mosquito vector using Bacillus thuringensis H-14. The weakness of this metode is its short residual effect.  This study aims to determine differences in the effectiveness of B. thuringiensis H-14 tested in two different water sources, namely well water and PDAM water in people's houses and its residual effects in the field. The study used a quasi-​experimental, which include laboratory and field experiments in March to September 2017. The research was carried out by producing B. thuringensis H-14 Salatiga isolates in the form of slow release tablets, testing the efficacy and measuring their effectiveness to Aedes aegypti mosquito larvae in two kinds of water sources. The results showed that the content of B. thuringiensis Salatiga isolate in slow release tablets weighing 125 mg was 5 mg. The efficacy test at laboratory scale showed that the LC50 was 0.436 ppm and the LC90 was 2.440 ppm. The effectiveness test in the field of LC50 (PDAM water) is 0.098 ppm and (well water) is 1.909 ppm, while LC90 (PDAM water) is 0.186 ppm and (well water) is 0.909 ppm. The efficacy assay results showed there was no significant difference in the effect of B. thuringiensis tablet between well water and PDAM water. B. thuringiensis H-14 tablets were effective in controlling Ae. aegypti larvae more than 80% until the 7th day in field testing.


1. Harapan H, Michie A, Mudatsir M, Sasmono RT, Imrie A. Epidemiology of dengue hemorrhagic fever in Indonesia: analysis of five decades data from the National Disease Surveillance. BMC Res Notes [Internet]. 2019;12(1):4–9. Available from: https://doi.org/10.1186/s13104-019-4379-9

2. Wang WH, Urbina AN, Chang MR, Assavalapsakul W, Lu PL, Chen YH, et al. Dengue hemorrhagic fever – a systemic literature review of current perspectives on pathogenesis, prevention and control. J Microbiol Immunol Infect [Internet]. 2020;53(6):963-78. Available from: https://doi.org/10.1016/j.jmii.2020.03.007

3. Kementerian Kesehatan RI. InfoDatin Situasi penyakit demam berdarah di Indonesia Tahun 2017 [Internet]. Jakarta; Pusat Data dan Informasi Kementerian Kesehatan RI; 2018 [cited 7 April 2020]. Available from: https://pusdatin.kemkes.go.id/resources/download/pusdatin/infodatin/InfoDatin-Situasi-Demam-Berdarah-Dengue.pdf

4. Legorreta-Soberanis J, Paredes-Solís S, Morales-Pérez A, Nava-Aguilera E, De Los Santos FRS, Sánchez-Gervacio BM, et al. Coverage and beliefs about temephos application for control of dengue vectors and impact of a community-based prevention intervention: secondary analysis from the Camino Verde trial in Mexico. BMC Public Health. 2017;17(Suppl 1):426. doi: 10.1186/s12889-017-4297-5

5. Valle D, Bellinato DF, Viana-Medeiros PF, Lima JBP, Martins Junior ADJ. Resistance to temephos and deltamethrin in Aedes aegypti from Brazil between 1985 and 2017. Mem Inst Oswaldo Cruz. 2019;114(3):1–17. doi: 10.1590/0074-02760180544

6. Corte R La, Melo VAD, Dolabella SS, Marteis LS. Variation in temephos resistance in field populations of Aedes aegypti (Diptera: Culicidae) in the state of Sergipe, Northeast Brazil. Rev Soc Bras Med Trop. 2018;51(3):284–90. doi: 10.1590/0037-8682-0449-2017.

7. Vieira Santos VS, Caixeta ES, Campos Júnior EO de, Pereira BB. Ecotoxicological effects of larvicide used in the control of Aedes aegypti on nontarget organisms: redefining the use of pyriproxyfen. J Toxicol Environ Heal - Part A Curr Issues [Internet]. 2017;80(3):155–60. Available from: http://dx.doi.org/10.1080/15287394.2016.1266721

8. Setha T, Chantha N, Benjamin S, Socheat D. Bacterial larvicide, Bacillus thuringiensis israelensis strain AM 65-52 water dispersible granule formulation impacts both dengue vector, Aedes aegypti (L.) population density and disease transmission in Cambodia. PLoS Negl Trop Dis. 2016;10(9):1–17. doi: 10.1371/journal.pntd.0004973

9. Pruszynski CA, Hribar LJ, Mickle R, Leal AL. A large scale biorational approach using Bacillus thuringiensis israeliensis (Strain AM65-52) for managing Aedes aegypti populations to prevent Dengue, Chikungunya and Zika transmission. PLoS One. 2017;12(2):1–17. doi: 10.1371/journal.pone.0170079.

10. Gómez-Vargas W, Valencia-Jiménez K, Correa-Londoño G, Jaramillo-Yepes F. Novel larvicide tablets of Bacillus thuringiensis var. israelensis: assessment of larvicidal effect on Aedes aegypti (Diptera: Culicidae) in Colombia. Biomedica. 2018;38:95–105. doi: 10.7705/biomedica.v38i0.3940

11. Sanahuja G, Banakar R, Twyman RM, Capell T, Christou P. Bacillus thuringiensis: a century of research, development and commercial applications. Plant Biotechnol J. 2011;9(3):283–300. doi: 10.1111/j.1467-7652.2011.00595.x.

12. Anggraeni YM, Rahardianingtyas E, Wianto R. Efikasi Bacillus thuringiensis H-14 isolat Salatiga sediaan bubuk dan cair terhadap jentik Culex quinquefasciatus. Vektora. 2015;7(2):51–6. doi:10.22435/vk.v7i2.4499.51-56

13. Hazra DK, Samanta AK, Sen K, Bakshi P. Mosquito vector management knowledge, attitude, practices and future of user & environment friendly new generation botanical mosquitocide formulations : a review. Int J Chem Stud. 2017;5(3):32–7.

14. Lachman L, Lieberman H, Kanig J. Teori dan praktek farmasi industri. Jakarta: UI Press. 1994. 699–712 p.

15. World Health Organization. Guidelines for laboratory and field testing of mosquito larvicides. World Health Organization Communicable Disease Control, Prevention and Eradication WHO Pesticide Evaluation Scheme; 2005. 1–41 p.

16. Lima JBP, De Melo NV, Valle D. Residual effect of two Bacillus thuringiensis var. israelensis products assayed against Aedes aegypti (Diptera: Culicidae) in laboratory and outdoors at Rio De Janeiro, Brazil. Rev Inst Med Trop Sao Paulo. 2005;47(3):125–30. doi: 10.1590/s0036-46652005000300002

17. Ansel H. Pengantar bentuk sediaan farmasi. Jakarta: UI Press; 1989. p. 244–71.

18. Kementerian Kesehatan Republik Indonesia. Farmakope Indonesia edisi V. Jakarta: Kementerian Kesehatan Republik Indonesia; 2014.

19. Chavan H, Gurmeet C, Nayan G, Anil J. Comparative study of in-process and finished products quality control test for tablet and capsules according to pharmacopoeias. Asian J Pharm Res Dev. 2018;6(3):60–8. doi: 10.22270/ajprd.v6i3.370

20. Nagendrakumar D, Keshavshetti GG, Shardor AG. An overview : matrix tablets as sustained release. Recent Research in Science and Technology. 2013;5(4):36-45.

21. El Yahya IR, Abdassah M. Review : matriks polimer yang digunakan pada tablet sustained release. Farmasetika. 2019;4(3):79-86. doi:10.24198/farmasetika.v4i3.22961

22. Zhang L, Zhang X, Zhang Y, Wu S, Gelbiĉ I, Xu L, et al. A new formulation of Bacillus thuringiensis: UV protection and sustained release mosquito larvae studies. Sci Rep. 2016;6(December):1–8. doi:10.1038/srep39425

23. Lawler SP. Environmental safety review of methoprene and bacterially-derived pesticides commonly used for sustained mosquito control. Ecotoxicol Environ Saf [Internet]. 2017;139(December 2016):335–43. Available from: http://dx.doi.org/10.1016/j.ecoenv.2016.12.038

24. Zhang Q, Hua G, Adang MJ. Effect and mechanisms of Bacillus thuringiensis crystal toxins for mosquito larvae. Insect Sci. 2016;24(5):714–29.

25. Palma L, Berry C. Understanding the structure and function of Bacillus thuringiensis toxins. Toxicon. 2016;109:1–3. doi: 10.1016/j.toxicon.2015.10.020

26. Kachhawa D. Microorganisms as a biopesticides. J Entomol Zool Stud. 2017;5(3):468–73.

27. Barratt BIP, Moran VC, Bigler F, van Lenteren JC. The status of biological control and recommendations for improving uptake for the future. BioControl. 2018;63:155–67. doi: 10.1007/s10526-017-9831-y

28. Zequi J, Lopes J, Santos FP, Vilas-Boas GT. Efficacy and persistence of two Bacillus thuringiensis israelensis formulations for the control of Aedes aegypti (Linnaeus, 1762) under simulated field conditions. Int J Mosq Res. 2015;2(3):5–9.

29. World Health Organisation. Principles and practices of drinking-water chlorination [Internet]. 2017 [cited 7 April 2020]. Available from: https://apps.who.int/iris/handle/10665/255145

30. González-Rizo A, Castañet CE, Companioni A, Menéndez Z, Hernández H, Magdalena-Rodríguez M, et al. Effect of chlorine and temperature on larvicidal activity of cuban bacillus thuringiensis isolates. J Arthropod Borne Dis. 2019;13(1):39–49.
How to Cite
Wardani A, Wigati R, Rahardianingtyas E, Wianto R, Nugroho A. Efektivitas Tablet Bacillus thuringiensis H-14 Isolat Salatiga terhadap Jentik Aedes aegypti pada Dua Sumber Air yang Berbeda. blb [Internet]. 30Jun.2021 [cited 19Oct.2021];17(1):1-0. Available from: https://ejournal2.litbang.kemkes.go.id/index.php/blb/article/view/3286