Penilaian Kualitas Data Penyebab Kematian di Indonesia Tahun 2014

  • Endang Indriasih Peneliti Pusat Sumber Daya dan Pelayanan Kesehatan, Badan Penelitian dan Pengembangan Kesehatan, Indonesia
  • Tita Rosita Peneliti Pusat Humaniora dan Manajemen Kesehatan, Badan Penelitian dan Pengembangan Kesehatan, Indonesia
  • Anni Yulianti Peneliti Pusat Sumber Daya dan Pelayanan Kesehatan, Badan Penelitian dan Pengembangan Kesehatan, Indonesia
  • Rozana Ika Agustiya Peneliti Pusat Humaniora dan Manajemen Kesehatan, Badan Penelitian dan Pengembangan Kesehatan, Indonesia
Keywords: statistik kematian, penyebab kematian, ANACONDA


Sample Registration System (SRS) is a demographic survey for providing data on causes of death (COD) in Indonesia. The quality of COD will be taken into consideration for health policies development. This paper aims to assess the quality of data on the causes of death in Indonesia through the proportion and level of garbage codes on the impact when used in policy making. The 2014 National COD data set were assessed by applying the Analysis of National Causes of Death for Action (ANACONDA) software tool version 3.7.0. Distributions and levels of unusable and insufficiently specified “garbage” codes were analyzed. The Result shows, Diseases of the circulatory system (62.6%) contributed the most to garbage cause of death. The proportion of unusable COD was 31% of total data. 80% of garbage code were unspecified deaths group. Most of the garbage codes has low-level on severity of impact level for policy, while 11% of total codes has medium, high dan very high level of impact. In Conclusion, the 2014 SRS data was not at high quality, but the implications of garbage code in making inappropriate policies are mostly at low level. The use of low-level codes has less important impact on public health policy. The 2014 SRS data could be considered as a scientific basis evidence for public health policy. Quality improvement still needs to be done by conducting training and refreshing to determine the cause of death for doctors and data collection techniques for data collectors
Keywords : Cause of Death, quality of data, Sample Registration System, ANACONDA

Sample Registration System (SRS) merupakan survei demografi untuk menyediakan data penyebab kematian (COD) di Indonesia. Kualitas COD akan menjadi bahan pertimbangan dalam membuat kebijakan kesehatan. Tulisan ini bertujuan untuk menilai kualitas data penyebab kematian di Indonesia melalui besar proporsi dan level kode sampah terhadap dampak yang ditimbulkan ketika digunakan dalam membuat kebijakan. Data penyebab kematian nasional tahun 2014 dinilai dengan menggunakan perangkat lunak Analisis Penyebab Kematian Nasional untuk Tindakan (ANACONDA) versi 3.7.0. Distribusi dan level kode "sampah" yang tidak dapat digunakan dianalisis dengan menggunakan ANACONDA. Hasil analisis menunjukkan, Diseases of the circulatory system (62.6%) berkontribusi terbanyak dalam hal kode sampah. Proporsi kode sampah yang tidak dapat digunakan adalah 31% dari total kode. Kode sampah yang paling umum digunakan adalah kelompok penyebab kematian tidak spesifik dan kelompok penyebab kematian antara. Berdasarkan tingkat keparahan dalam membuat kebijakan, sebagian besar kode sampah termasuk kategori level rendah, hanya 11% dari total kode memiliki tingkat dampak sedang, tinggi dan sangat tinggi. Kesimpulannya, kualitas data SRS 2014 masih kurang baik, namun implikasi yang ditimbulkan kode sampah dalam membuat kebijakan yang salah sebagian besar berada pada level rendah. Penggunaan kode-kode level rendah memiliki dampak yang kurang penting bagi kebijakan kesehatan masyarakat. Data penyebab kematian SRS 2014 layak dipertimbangkan untuk digunakan sebagai dasar kebijakan Kesehatan masyarakat. Pelatihan penentuan penyebab kematian untuk dokter dan juga petugas AV perlu dilakukan agar kualitas data COD selanjutnya dapat lebih baik
Kata kunci: penyebab kematian, kualitas data, Sample Registration System, ANACONDA


Mills S, Abouzahr C, Kim J, Rassekh BM, Deborah Sarpong. Civil Registration and Vital Statistics for Monitoring the Sustainable Development Goals [Internet]. World Bank; 2017. Available from:

CRVS and the SDGs (SDGs) : A wellfunctioning civil registration and vital statistics system is critical in monitoring country progress towards the Sustainable Development Goals [Internet]. 2016 [cited 2020 Apr 1]. Available from:

Rao C, Lopez AD, Yang G, Begg S, Ma J. Evaluating National Cause-of-Death Statistics : Principles and Application to The Case of China. Bull World Heal Organ [Internet]. 2005;019182(04). Available from:

Byass P, Kahn K, Fottrell E, Collinson MA, Tollman SM. Moving from data on deaths to public health policy in Agincourt, South Africa: Approaches to analysing and understanding verbal autopsy findings. PLoS Med [Internet]. 2010;7(8). Available from:

AbouZahr C. Verbal autopsy: who needs it? Popul Health Metr [Internet]. 2011;9(1):19. Available from:

Bauni E, Ndila C, Mochamah G, Nyutu G, L M, C O, et al. Validating physician-certified verbal autopsy and probabilistic modeling (InterVA) approaches to verbal autopsy interpretation using hospital causes of adult deaths. Popul Health Metr [Internet]. 2011;9(49). Available from:

Murray CJ, Lopez AD, Black R, Ahuja R, Ali SM, Baqui A, et al. Population Health Metrics Research Consortium gold standard verbal autopsy validation study: design, implementation, and development of analysis datasets. Popul Health Metr [Internet]. 2011;9(1):27. Available from:

Balitbangkes. Riset Kesehatan Dasar 2007 [Internet]. Jakarta; 2008. Available from:

Balitbangkes. Riset Kesehatan Dasar 2013 [Internet]. Jakarta; 2013. Available from:

Balitbangkes. Sample Registration System 2014. Jakarta; 2015.

Fottrell E, Byass P. Verbal autopsy: Methods in transition. Epidemiol Rev [Internet].2010;32(1):38–55.Available from:

Murray CJ, Lozano R, Flaxman AD, P S, Phillips D, J S, et al. Using verbal autopsy to measure causes of death: the comparative performance of existing methods. BMC Med [Internet]. 2014;12(1). Available from:

Miasnikof P, Giannakeas V, Gomes M, Aleksandrowicz L, Shestopaloff AY, Alam D, et al. Naive Bayes classifiers for verbal autopsies: comparison to physician-based classification for 21,000 child and adult deaths. BMC Med. 2015;13(1):286.

Byass P. Whither verbal autopsy? Popul Health Metr [Internet]. 2011;9(1):23. Available from:

Leitao J, Chandramohan D, Byass P, Jakob R, Bundhamcharoen K, Choprapawon C, et al. Revising the WHO verbal autopsy instrument to facilitate routine cause-of-death monitoring. Glob Health Action [Internet]. 2013;6(1). Available from:

WHO. ICD-10 : international statistical classification of diseases and related health problems. 2nd ed. 2005.

Fligner CL, Murray J, Roberts DJ. Synergism of verbal autopsy and diagnostic pathology autopsy for improved accuracy of mortality data. Popul Health Metr [Internet]. 2011;9(1):25. Available from:

Byass P. Usefulness of the Population Health Metrics Research Consortium gold standard verbal autopsy data for general verbal autopsy methods. BMC Med [Internet]. 2014;12(1):23. Available from:

Naghavi M, Richards N, Chowdhury H, Eynstone-hinkins J, Franca E, Hegnauer M, et al. Improving the quality of cause of death data for public health policy : are all ‘ garbage ’ codes equally problematic ? 2020;1:18–20. Available from:

Mikkelsen L, Richards N, Lopez A. Redefining ‘ garbage codes ’ for public health policy : Report on the expert group, 27-28 February 2017. CRVS Technical Outcome Series. Melbourne; 2018.

Naghavi M, Makela S, Foreman K, O’Brien J, Pourmalek F, Lozano R. Algorithms for enhancing public health utility of national causes-of-death data. Popul Health Metr [Internet].2010;8(1):9. Availablefrom:

Moesgaard K, Id I, Mikkelsen L, Adair T, Lopez AD. Are cause of death data fit for purpose ? evidence from 20 countries at different levels of socio-economic development. PLoS One [Internet]. 2020;1–17. Available from:

Mikkelsen L, Moesgaard K, Hegnauer M, Lopez AD. ANACONDA : a new tool to improve mortality and cause of death data. 2020;1–13.

Mikkelsen L, Lopez AD. Resources and Tools: Guidance for assessing and interpreting the quality of mortality data using ANACONDA Resources and tools. Melbourne: The Civil Registration and Vital Statistics Improvement Group, Bloomberg Philanthropies Data for Health Initiative; 2017.

França E, Ishitani LH, Teixeira R, Duncan BB, Marinho F. Changes in the quality of causeof-death statistics in Brazil : garbage codes among registered deaths in 1996 – 2016. Popul Health Metr [Internet]. 2020;18(Suppl 1):1– 13. Available from:

How to Cite
Indriasih E, Rosita T, Yulianti A, Agustiya R. Penilaian Kualitas Data Penyebab Kematian di Indonesia Tahun 2014. bpk [Internet]. 30Dec.2020 [cited 21Oct.2021];48(4):235-42. Available from: