Construction of plasmids expressing recombinant B cell epitopes of PD1

  • Sofy Meilany
  • Andrijono Andrijono
  • Pauline Phoebe Halim
  • Budiman Bela
Keywords: PD1, Epitope, Cancer, Immunotherapy

Abstract

Latar Belakang: Pengobatan kanker di Indonesia umumnya menggunakan pengobatan dengan kemoterapi atau dengan operasi. Efek samping dari pengobatan ini antara lain adalah kerontokan rambut, mual dan penurunan berat badan. Saat ini sedang berkembang alternatif terapi kanker dengan menggunakan immunoterapi. Kemampuan sel kanker untuk menghindar dari sistem imun disebabkan adanya protein PD-1 pada sel T yang berikatan dengan ligannya PD-L1.


Metode: Penelitian ini merupakan penelitian awal yaitu pembuatan rekombinan PQE PD-1 dan menggunakan bagian soluble dari PD-1 yang disebut dengan EP2PD1 yang akan digunakan untuk pembuatan antibodi monoklonal dan sistem pendeteksi antibodi monoklonal. Metode pembuatan rekombinan PD-1 dan EP2PD1 dengan cara penentuan sekuens epitop sel B yang paling imunogenik dilanjutkan dengan amplifikasi sekuen tersebut dengan PCR dan diligasi ke vektor pengekspresi PQE80.


Hasil: Telah terbentuk konstruksi rekombinan PQE80 PD-1 dan PQEEP2PD1 yang diverifikasi menggunakan PCR koloni, pemotongan enzimatik dan sekuensing. Hasil penelitian menunjukkan bahwa epitop PD1 telah terklona ke PQE 80 dan tidak ditemukan mutasi dalam urutan asam amino.


Kesimpulan: Konstruksi yang dibuat tidak mempunya mutasi dan dapat dilanjutkan untuk pembuatan antibodi monoklonal. 


Kata Kunci: PD1, Epitop, Kanker, Immunotherapy

 

Abstract


Background: Medications on cancer to date in Indonesia is mostly by surgical or chemotherapy, this type of medications is not always curing the patients. The side effect of the chemotherapy drugs sometimes more challenging such as hair loss, nausea and lost weight. One of the promising targets for cancer is using immune therapy. Cancer cells can avoid immune response by surprising immunity through activation of specific inhibitory signalling pathways, referred to as immune checkpoints. Immune check points like PD-1, PD-L1 are breakthrough therapies in oncology and this monoclonal antibody have been approved by the FDA for treatment. In this research we develop full PD-1 and part of PD1 sequence as an insert then we construct with plasmid PQE80L. This recombinant called PQE PD-1 and PQEEP2PD1. The aim of this study is to make recombinant which would be used to detect PD1 full clone monoclonal antibodies.


Methods: In this study, we designed our recombinants using Indonesian HLA and others using in silico models, this prototype will not only cover Indonesian patients but also other country.


Results: The result showed that the epitope sequence of PD1 has been clone to PQE 80 wt and verified using colony PCR, Enzyme Digestion and Sanger Sequencing. The Clone than will be expressed and injected to animal model to produce antibody.


Conclusion: Construction of recombinant PQE PD-1 and PQE EP2PD1 are constructed without any mutation in the sequence, this recombinant can be used in the next study for protein expression of PQE PD-1 and PQE EP2PD1. 


Keywords: PD1, Epitope , Cancer, Immunotherapy

 

References

Zihai Li, Wenru Song, Mark Rubinstein, Delong Liu. Recent updates in cancer immunotherapy: a comprehensive review and perspective of the 2018 China Cancer Immunotherapy Workshop in Beijing. Journal of Hematology & Oncology. 2018;11:142.

Teng MW, Galon J, Fridman WH, Smyth MJ. From mice to humans: developments in cancer immunoediting. J Clinical Invest. 2015;125:3338-46.

Michot JM, Bigenwald C, Champiat S, Collins M, Carbonnel F, Postel-Vinay S, et al. Immune-related adverse events with immune checkpoint blockade: a comprehensive review. Eur J Cancer. 2016;54:139-48.

Mahoney MK, Freeman GJ, McDermott DF. The next immune-checkpoint inhibitors: PD-1/PDL1 blockade in Melanoma. Clinical Therapeutics. 2015;37:764-82.

Homet Morenoand B, Ribas A. Anti-programmed cell death protein-1/ligand-1 therapy in different cancers. British Journal of Cancer. 2015;112:1421-27.

Xu Lihui, Liu Yi, H Xianhui. Expression and purification of soluble human programmed death-1 in Escherichia coli. Cellular & Molecular Immunology. 2006;3:139-43.

Gonzales H, Hagerling C, Werb Z. Roles of the immune system in cancer: from tumor initiation to metastatic progression. Genes & Development. 2018;32:1267-84.

Brusic V, Rudy G, and Harrison LC. “MHCPEP: a database of MHC-binding peptides.” Nucleic Acids Research, vol. 22, no. 17, pp. 3663-5, 1994.

Chart H, Smith HR, La Ragione RM, Woodward MJ. An investigation into the pathogenic properties of Escherichia coli strains BLR, BL21, DH5α, and EQ1. Journal of Applied Microbiology. 2000;89:1048-58.

Ponomarenko J, Papangelopoulos N, Zajonc DM, Peters B, Sette A, Bourne PE. “IEDB-3D: structural data within the immune epitope database,” Nucleic Acids Research, vol. 39, no. 1, pp. D1164–D1170, 2011.

Guennadi S, Danie`le JP, and Richard D. Escherichia coli Physiology in Luria-Bertani Broth. Journal of Bacteriology. 2007;8746-9.

Sørensen HP, Mortesen KK. Advanced genetic strategies for Recombinant protein expression in Escherichia coli. Journal of Biotechnology. 2005;115:113-28.

Rosano GL, Ceccarelli EA. Recombinant protein expression in Escherichia coli: advances and challenges. Frontiers in Microbiology. 2014;172:1-17.

Seidel AJ, Otsuka A, Kabashima K. Anti PD-1 and Anti CTLA4 therapies in Cancer: Mechanisms of action, Efficacy and Limitations. Frontiers in Oncology. 2018. 1-14.

Yaghoubi N, Soltania A, Ghazvinib K, Mahdi S, Hashemyc SI. PD-1/ PD-L1 blockade as a novel treatment for colorectal cancer. Biomedicine & Pharmacotherapy.2019;312-8.

Published
2019-07-25
How to Cite
Meilany, S., Andrijono, A., Halim, P., & Bela, B. (2019). Construction of plasmids expressing recombinant B cell epitopes of PD1. Health Science Journal of Indonesia, 10(1), 1-7. https://doi.org/10.22435/hsji.v10i1.1848
Section
Articles