In silico analysis of V48A dihydropteroate synthase mutation to dapsone on Mycobacterium leprae from Papua

  • Yustinus Maladan Health Research and Development Unit of Papua, National Institute of Health Research and Development (Badan Litbang Kesehatan)
  • Hana Krismawati Health Research and Development Unit of Papua, National Institute of Health Research and Development (Badan Litbang Kesehatan)
  • Hotma Martogi Laurensia Hutapea Health Research and Development Unit of Papua, National Institute of Health Research and Development (Badan Litbang Kesehatan)
  • Antonius Oktavian Health Research and Development Unit of Papua, National Institute of Health Research and Development (Badan Litbang Kesehatan)
Keywords: Mycobacterium leprae, folP1 gene, dihydropteroate synthase, dapsone


Latar belakang: Lepra merupakan penyakit yang disebabkan oleh Mycobacterium leprae. Resistensi obat merupakan salah satu tantangan dalam pemberantasan kusta khususnya di Papua. Adanya mutasi pada gen folP1 penyandi dihydropteroate synthase (DHPS) merupakan dasar untuk deteksi molekuler resistensi dapson pada penyakit lepra. Tujuan penelitian ini adalah mendeteksi mutasi pada gen folP1 Mycobacterium leprae dari Papua, Indonesia dan menganalisis pengaruh mutasi tersebut terhadap dapson dengan metode in silico.

Metode: Identifikasi mutasi pada gen folp1 M. leprae dilakukan melalui proses Basic Local Alignment Search Tool (BLAST) di gene bank. Analisis efek mutasi dengan menggunakan server Have (y) Our Protein Explained (HOPE). Prediksi binding pocket menggunakan Computed Atlas of Surface Topography of proteins (CASTp). Homologi modeling struktur 3D DHPS menggunakan server Iterative Threading ASSEmbly Refinement (I TASSER). Analisis docking dengan menggunakan AutoDock Vina yang terintegrasi dengan aplikasi Python Prescription (PyRx).

Hasil: Hasil sekuensing menunjukkan adanya variasi dalam gen folP1 M. leprae yaitu perubahan dari Timin (T) menjadi Sitosin (C) pada nukleotida 143. Residu yang bermutasi (V48A) terletak pada domain yang penting untuk aktivitas protein dan kontak dengan residu di domain lain. Ada kemungkinan bahwa interaksi ini penting untuk fungsi protein secara benar. Mutan V48A tidak banyak mempengaruhi stabilitas dari dihydropteroate synthase M. leprae.

Kesimpulan: Berdasarkan analisis molecular docking, mutasi V48A tidak mempengaruhi binding affinity dapson terhadap dihydropteroate synthase M. leprae. Hasil ini menunjukkan mutan V48A kemungkinan tetap
rentan terhadap dapson. Dengan demikian perlu dilakukan uji in vivo untuk mengkofirmasi efek mutasi V48A.

Kata kunci: Mycobacterium leprae, folP1 gene, dihydropteroate synthase, dapson



Background: Leprosy is a disease caused by Mycobacterium leprae. Drug resistance is one of the challenges in leprosy elimination especially in Papua. The presence of mutations in folP1 gene that encode dihydropteroate synthase (DHPS) was considered as the exclusive basis for molecular detection of dapsone resistance in leprosy. The objective of this study was to detect mutations in the folP1 gene of Mycobacterium leprae from Papua, Indonesia and to analyze the effect of these mutations on dapsone using the in-silico method.

Methods: Identification of mutations in the folp1 M. leprae gene is carried out through the Basic Local Alignment Search Tool (BLAST) process in the gene bank. The analysis of the effects of mutations using the Have (y)Our Protein Explained (HOPE) server. Bindings pocket prediction is done using the Computed Atlas of Surface Topography of proteins (CASTp). Homology modeling 3D structure of DHPS using the Iterative Threading ASSEmbly Refinement (I-TASSER) server. Docking analysis was performed using AutoDock Vina which is integrated with the Python Prescription (PyRx) application.

Results: The sequencing results showed a variation in the folP1 M. leprae gene, namely a change from thymine (T) to cytosine (C) in nucleotide 143. The mutated residue (V48A) is in a domain that is essential for the activity of the protein and in contact with residues in another domain. It is possible that this interaction is important for the correct function of the protein. V48A mutants did not significantly affect the stability of DHPS M. leprae.

Conclusion: Based on molecular docking analysis, this mutation does not affect binding affinity dapsone against M. leprae dihydropteroate synthase. These results indicate that the V48A mutant is likely to remain susceptible to dapsone. Thus, it is necessary to do an in vivo test to confirm the effect of the V48A mutation.

Keywords: Mycobacterium leprae, folP1 gene, dihydropteroate synthase, dapsone


Mahon CR, Lehman DC, Manuselis G. Textbook of diagnostic microbiology. Fifth Edition. Elsevier; 2015.

WHO. Global leprosy (Hansen disease) update, 2019: time to step-up prevention initiatives. Wkly Epidemiol Rec. 2020;95(36):417–40.

District Goverment of Jayapura City. General Description of Jayapura City. In: Long and Medium Policy Planning of Jayapura City 2012-2016. Jayapura: District Goverment of Jayapura City; 2016. p. 10–50.

Ministry of Health Republic of Indonesia. Indonesia Health Profil 2013. Jakarta: Ministry Of Health Republic of Indonesia; 2014. 1–182 p.

Ministry of Health Republic of Indonesia. Data and Information 2014 (Indonesia Health Profil). Ministry Of Health Republic of Indonesia; 2015.

WHO. Leprosy elimination. 2017. Available from:

Seydel JK, Richter M, Wempe E. Mechanism of action of the folate blocker diaminodiphenylsulfone (dapsone, DDS) studied in E. coli cell-free enzyme extracts in comparison to sulfonamides (SA). Int J Lepr. 1980;48(1):18–29.

Chaitanya S, Das M, Bhat P, Ebenezer M. Computational Modelling of Dapsone Interaction with Dihydropteroate synthase in Mycobacterium leprae; Insights into Molecular Basis of Dapsone Resistance in Leprosy†. J Cell Biochem. 2015;1–31.

Williams DL, Spring L, Harris E, Roche P, Gillis TP. Dihydropteroate Synthase of Mycobacterium leprae and Dapsone Resistance. Antimicrobial Agents and Chemotherapy. 2000;44(6):1530–7.

Maeda S, Matsuoka M, Nakata N, Kai M, Maeda Y, Hashimoto K en, et al. Multidrug resistant Mycobacterium leprae from patients with leprosy. Antimicrob Agents Chemother. 2001;45(12):3635–9.

Cambau E, Carthagena L. Dihydropteroate synthase mutations in the folP1 gene predict dapsone resistance in relapsed cases of leprosy. Clin Transl Allergy. 2006;42:238–41.

Williams DL, Gillis TP. Drug-resistant leprosy: monitoring and current status. Lepr Rev. 2012;83:269–81.

Wang W, Kollman PA. Computational study of protein specificity: the molecular basis of HIV-1 protease drug resistance. Proc Natl Acad Sci U S A. 2001;98(26):14937–42.

Antunes DA, Rigo MM, Sinigaglia M, De Medeiros RM, Junqueira DM, Almeida SEM, et al. New insights into the in silico prediction of HIV protease resistance to nelfinavir. PLoS One. 2014;9(1).

Ferreira LG, Dos Santos RN, Oliva G, Andricopulo AD. Molecular docking and structure-based drug design strategies. Vol. 20, Molecules. 2015. 13384–13421 p.

Yang J, Zhang Y. I-TASSER server: new development for protein structure and function predictions. Nucleic Acids Res. 2015;43:W174–81.

Schymkowitz J, Borg J, Stricher F, Nys R, Rousseau F, Serrano L. The FoldX web server: an online force field. Nucleic Acids Res. 2005;33:W382–8.

Trott O, Olson A. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. J Comput Chem. 2010;31(2):455–61.

Dallakyan S. Small-molecule library screening by docking with PyRx. Methods Mol Biol. 2015;1263:243–50.

Venselaar H, te Beek TAH, Kuipers RKP, Hekkelman ML, Vriend G. Protein structure analysis of mutations causing inheritable diseases. An e-Science approach with life scientist friendly interfaces. BMC Bioinformatics. 2010;11.

Dundas J, Ouyang Z, Tseng J, Binkowski A, Turpaz Y, Liang J. CASTp: computed atlas of surface topography of proteins with structural and topographical mapping of functionally annotated residues. Nucleic Acids Res. 2006;34:116–8.

Zhang Y. I-TASSER: fully automated protein structure prediction in CASP8. Protein. 2009;77(Suppl 9):1–26.

Li W, Matsuoka M, Kai M, Thapa P, Khadge S, Hagge DA, et al. Real-Time PCR and High-Resolution melt analysis for rapid detection of Mycobacterium leprae drug resistance mutations and strain types. J Clin Microbiol. 2012;742–53.

Araujo S, Goulart LR, Truman RW, Goulart IM, Vissa V, Li W, et al. qPCR-High resolution melt analysis for drug susceptibility testing of Mycobacterium leprae directly from clinical specimens of leprosy patients. PLoS Negl Trop Dis. 2017;1–18.

Nakata N, Kai M, Makino M. Mutation analysis of the Mycobacterium leprae folP1 gene and dapsone resistance. Antimicrob Agents Chemother. 2011;55(2):762–6.

Baohong J. Drug susceptibility testing of Mycobacterium leprae. Int J Lepr. 1987;55(4 SUPPL.):830–5.

How to Cite
Maladan, Y., Krismawati, H., Hutapea, H., & Oktavian, A. (2020). In silico analysis of V48A dihydropteroate synthase mutation to dapsone on Mycobacterium leprae from Papua. Health Science Journal of Indonesia, 11(2), 70-76.