Susceptibility Status of Aedes aegypti Mosquito (Diptera: Culicidae) to Organophosphate and Pyrethroid Insecticides in Tanjung Priok Port Health Quarantine

  • Yahiddin Seliandro Sub-Direktorat Pencegahan dan Pengendalian Penyakit Tular Vektor dan Zoonotik, Kementerian Kesehatan, Jalan Percetakan Negara No.29, Johar Baru, Kota Jakarta Pusat, Daerah Khusus Ibukota Jakarta, Indonesia
  • Tri Baskoro T Satoto Parasitologi, FKKMK Universitas Gadjah Mada, Jalan Farmako Sekip Utara, Daerah Istimewa Yogyakarta, Indonesia
  • Sitti Rahmah Umniyati Parasitologi, FKKMK Universitas Gadjah Mada, Jalan Farmako Sekip Utara, Daerah Istimewa Yogyakarta, Indonesia
  • Nur Alvira Pascawati Epidemiologi, Fakultas Ilmu Kesehatan, Universitas Respati Yogyakarta, Jalan Laksda Adisucipto KM 6,3, Depok, Sleman, Daerah Istimewa Yogyakarta, Indonesia
Keywords: Ae. aegypti, malathion, temephos, cypermethrin, voltage-gated sodium channel

Abstract

Animal-borne diseases and vectors in seaport health areas is designated to be done in a rapid and precise manner. One of the Ae. aegypti control is using insecticides. The aims of this study are to find out and evaluate the susceptibility status of Ae. aegypti to organophosphate and pyrethroid insecticides, and also to observe the increase of non-specific esterase enzyme activities and voltage-gated sodium channel (VGSC) gene mutation in Ae. aegypti mosquitoes in Tanjung Priok Port Health Quarantine working area in 2016. Susceptibility status is determined by three distinct test methods: bioassay method (Impregnated paper containing 0.8% malathion, 0.05% cypermethrin and 0.02 ppm temephos). Biochemistry method and biomolecular assay (PCR and sequencing) to identify VGSC gene mutation. Based on bioassay test using malathion, cypermethrin and temephos showed that Ae. aegypti mosquitoes from Tanjung Priok, Sunda Kelapa, and Muara Angke ports has been resistance to malathion and cypermethrin, and were still susceptible to temephos. The results of biochemical tests on Ae aegypti to organophosphates showed moderate levels of resistance and sensitivity. VGSC gene mutation was observed on sites S989P and V1016G, while site F1534 did not showed any mutation.

References

1. Lederberg J, Davis JR. Emerging infectious disease from the global to the local perpective: a summary of a workshop of the forum on emerging infectious. Washington: Institute of Medicine (US) Forum on Emerging Infections; 2001. Available from: https://www.ncbi.nlm.nih.gov/pubmed/22896870.

2. Kemenkes RI. Organisasi dan tata kerja Kantor Kesehatan Pelabuhan. Jakarta: Peraturan Menteri Kesehatan Republik Indonesia Nomor: 2348/Menkes/Per/XI/2011; 2011.

3. Departemen Kesehatan. Petunjuk teknis disinfeksi kapal laut dan pesawat udara. Dirjen PP&PL; 2007.

4. WHO. Vector surveillance and control at ports, airpots, and ground crossing. control of neglected tropical diseases vector ecology and management capacity, alert and response supprot for International Health Regulations Capacity Development Ports, Airports and Ground Crossing.Jenewa; 2016.

5. Nusa R, Ipa M, Delia. T, Maltia. S. Penentuan status resistensi Ae. aegypti dari endemis DBD di Kota Depok terhadap malathion. Buletin Penelitian Kesehatan. 2008;36(1):20-5.

6. Widiarti. Status kerentanan Anopheles aconitus terhadap insektisida organophosfat (fenitrothion) dan karbamat (bendiocarb) di Kabupaten Jepara dengan uji biokemis. Tesis. Yogyakarta: UGM; 2000.

7. Francis S, Saavedra Rodriguez K, Perera R, Paine M, Black WC, Delgoda R. Insecticide resistance to permethrin and malathion and associated mechanisms in Aedes aegypti mosquitoes from St. Andrew Jamaica. PLoS One. 2017;12(6):1-13. doi: 10.1371/journal.pone.0179673.t001.

8. Ahmad I, Astari S, Rahayu R, Hariani N. Status kerentanan Aedes aegypti (Diptera : Culicidae) pada tahun 2006-2007 terhadap malation di Bandung, Jakarta, Surabaya, Palembang dan Palu. Biosfera. 2009;26(2):85-9. doi: 10.20884/1.mib.2009.26.2.119.

9. WHO. Test procedures for insecticide resistance monitoring in malaria mosquitoes. Jenewa: Wolrd Health Organization; 2016.

10. Caroline C. Insecticide fact sheet malathion. Journal of Pesticide Reform. 2003;23(4):10-5. Available from: https://d3n8a8pro7vhmx.cloudfront.net/ncap/pages/26/attachments/original/1428423398/malathion.pdf?1428423398.

11. Sunaryo, Ikawati B, Rahmawati, Widiastuti D. Status resistensi vektor demam berdarah dengue (Aedes aegypti) terhadap malathion 0,8% dan permethrin 0,25% di Provinsi Jawa Tengah. Jurnal Ekologi Kesehatan. 2014;13(2):146-52.

12. Widiastuti D, Ikawati B. Resistensi Malathion dan aktivitas enzim esterase pada populasi nyamuk Aedes aegypti di Kabupaten Pekalongan. BALABA. 2016;12(2):61-70. doi: 10.22435/blb.vI2i2.199.

13. Auteri M, Francesco LR, Blanda V, Torina A. Insecticide resistance associated with KDR mutation in Aedes albopictus: an update on worldwide evidances. Hindawi. 2018; Article ID 3098575:1-10. doi: 10.1155/2018/3098575.

14. Lidia K, Levina E, Setianingrum S. Deteksi dini resistensi nyamuk Aedes albopictus terhadap insektisida organofosfat di daerah endemis demam berdarah dengue di Palu. Majalah Kesehatan Masyarakat. 2018;3(2):106-10.

15. Brengues C, Hawkes NJ, Chandre F, Mc Carroll L, Duchon S, Guillet P, et al. Pyrethroid and DDT cross-resistance in Aedes aegypti is correlated with novel mutations in the voltage-gated sodium channel. Medical and Veterinary Entomol. 2003;17(1):87-94. doi: 10.1046/j.1365-2915.2003.00412.x.

16. Lima JB, Da-Cunha MP, Da Silva RC, Galardo AK, Soares SS, Braga IA, et al. Resistance of Aedes aegypti to organophosphates in several municipalities in the state of Rio de Janeiro and EspĂ­rito Santo Brazil. The American Journal of Tropical Medicine and Hygiene. 2003;68(3):329-33. Available from: https://www.ncbi.nlm.nih.gov/pubmed/12685640.

17. WHO. Insecticide resistance technical update. entomology and vector control unit. Jenewa: World Health Organization; 2016.

18. Lee HL, Rapid and simple biochemical method fot the detection of insecticide resistance due to elevate esterase activity in Culex quinquefasciatus. Tropical Biomedicine. 1990;7(1):21-8. Available from: https://www.cabdirect.org/cabdirect/abstract/19912079985.

19. Widiarti. Uji mikroplat aktivitas enzim esterase untuk mendeteksi resistensi Anopheles aconitus terhadap insektisida malation. Jurnal Kedokteran YARSI. 2015;13(1):1-10.

20. Soenjono SJ, Suwarja, Pandean MM. Status resistensi vektor demam berdarah dengue Aedes aegypti di Kota Tomohon. Jurnal Vektor Penyakit. 2017;11(2):43-8. doi: 10.22435/vektorp.v11i2.6470.43-48.

21. Satoto TBT, Alvira N, Wibawa T, Dibtyanusa A. Controlling factors that potentially against transmission of dengue hemorrhagic fever at state elementary schools in Yogyakarta. Kesmas: National Public Health Journal. 2017;11(4):178-84. doi: 10.21109/kesmas.v11i4.1248.

22. WHO. Monitoring of insecticide resistance in malaria vectors. Jenewa: World Health Organization; 1980.

23. Shinta, Sukowati S, Fauziah A. Kerentanan nyamuk Ae. aegypti di Daerah Khusus Ibu Kota Jakarta dan Bogor terhadap insektisida malathion dan lambdacyhalotrin. Jurnal Ekologi Kesehatan. 2008;7(1):722-31.

24. Peiris HTR, Hemingway J. Characterisation and inheritance of elevated esterase in organophosphorus and carbamate insecticide resistant Culex quinquefasciatus (Diptera : Culicidae) from Sri Langka. Bulletin of Entomological Research. 1993;83(1):127-32. Available from: https://www.cambridge.org/core/journals/bulletin-of-entomological-research/article/characterization-and-inheritance-of-elevated-esterases-in-organophosphorus-and-carbamate-insecticide-resistant-culex-quinquefasciatus-diptera-culicidae-from-sri-lanka/DFDD840520C059C3A074A48665E84E8D.

25. Stenhouse SA, Plernsub S, Yanola J, Lumjuan N, Danrakool A, Choochote W, et al. Detection of the V1016G mutation in the voltage-gated sodium channel gene of Aedes aegypti (Diptera: Culicidae) by allele-specific PCR assay, and its distribution and effect on deltamethrin resistance in Thailand. Parasit Vectors. 2013;6(1):253. doi: 10.1186/1756-3305-6-253.

26. K Y. Role of detoxification esterase in insecticide resistances. New York: Pest Resistance to Pesticide. Plenum Press; 1976.

27. Yanola J, Pradya S, Catherine W, Woottichai N, La-aied P. A Novel F1552/C1552 point mutation in the Aedes aegypti voltage-gated sodium channel gene associated with permethrin resistance. Pesticide Biochemistry and Physiology. 2010;96(3):127-31. doi: 10.1016/j.pestbp.2009.10.005.

28. Saelim, V, Brogdon WG, Rojanapremsuk J, Suvannadabba S, Pandii W, Jones JW, et al.. Bottle and biochemical assay on temefos resistence in Aedes aegypti in Thailand. Southeast Asian J Trop Med Public Health. 2005;36(2):417-25. Available from: https://www.ncbi.nlm.nih.gov/pubmed/15916049

29. Haris AF, Rajatileka S, Ranson H. Pyrethroid resistance in Aedes aegypti from Grand Cayman. American Jounal of Tropical Medicine and Hygiene. 2010;83(2):277-84. doi: 10.4269/ajtmh.2010.09-0623.
Published
2019-11-25
How to Cite
1.
Seliandro Y, Satoto TB, Umniyati S, Pascawati N. Susceptibility Status of Aedes aegypti Mosquito (Diptera: Culicidae) to Organophosphate and Pyrethroid Insecticides in Tanjung Priok Port Health Quarantine. blb [Internet]. 25Nov.2019 [cited 25Apr.2024];15(2):105-14. Available from: http://ejournal2.litbang.kemkes.go.id/index.php/blb/article/view/1406
Section
Articles