The Susceptibility of Aedes aegypti In Dengue Endemic Areas, Tegal, Central Java Indonesia

  • Irfan Kresnadi Departemen of Parasitology, Faculty of Medicine, University of Indonesia, Jalan Salemba Raya Nomor 6, Jakarta Pusat, Indonesia
  • Bany Faris Amin Departemen of Parasitology, Faculty of Medicine, University of Indonesia, Jalan Salemba Raya Nomor 6, Jakarta Pusat, Indonesia
  • Haekal Ariq Departemen of Parasitology, Faculty of Medicine, University of Indonesia, Jalan Salemba Raya Nomor 6, Jakarta Pusat, Indonesia
  • Viharsyah Aulia Akbar Departemen of Parasitology, Faculty of Medicine, University of Indonesia, Jalan Salemba Raya Nomor 6, Jakarta Pusat, Indonesia
  • Rawina Winita Departemen of Parasitology, Faculty of Medicine, University of Indonesia, Jalan Salemba Raya Nomor 6, Jakarta Pusat, Indonesia
  • Ridhawati Syam Departemen of Parasitology, Faculty of Medicine, University of Indonesia, Jalan Salemba Raya Nomor 6, Jakarta Pusat, Indonesia
  • Lisawati Susanto Departemen of Parasitology, Faculty of Medicine, University of Indonesia, Jalan Salemba Raya Nomor 6, Jakarta Pusat, Indonesia
  • Nurhadi Eko Firmansyah Departemen of Parasitology, Faculty of Medicine, University of Indonesia, Jalan Salemba Raya Nomor 6, Jakarta Pusat, Indonesia
  • Heri Wibowo Departemen of Parasitology, Faculty of Medicine, University of Indonesia, Jalan Salemba Raya Nomor 6, Jakarta Pusat, Indonesia
Keywords: Aedes aegypti, permethrin, susceptibility, temephos

Abstract

Tegal district is a dengue-endemic area. One of the strategies to control Ae. aegypti is the use of insecticides. The determination of insecticide resistance in a dengue-endemic area is useful for supporting policies for Ae. aegypti control program. The aim of this study is to determine the susceptibility of Ae. aegypti in Tegal district, Central Java. Aedes aegypti larvae were collected from June to July 2018. Susceptibility bioassay of Ae. aegypti larvae against temephos and Ae. aegypti female against permethrin were conducted refers to the WHO protocol. The susceptibility of Ae. aegypti was interpreted based on WHO protocol as well. The mortality of Ae. aegypti larvae were at 0.025 ppm by 90%. The LC50 at 0.0005 ppm, and LC99 at 1.1037 ppm, respectively. The mortality rate of Ae. aegypti against permethrin was 26%. The LT50 at 6611.636 minutes, and LT99 at 5958807.272 minutes, respectively. The susceptibility of Ae. aegypti larvae were possible resistant but adult Ae. aegypti was resistant.

References

1. Harapan H, Michie A, Mudatsir M, Sasmono RT, Imrie A. Epidemiology of dengue hemorrhagic fever in Indonesia: analysis of five decades data from the National Disease Surveillance. BMC Res Notes. 2019;12(1):4–9

2. Dinas Kesehatan Kabupaten Tegal. Profil kesehatan Kabupaten Tegal tahun 2018. Tegal: Dinas Kesehatan Kabupaten Tegal; 2019.

3. Hamid PH, Prastowo J, Ghiffari A, Taubert A, Hermosilla C. Aedes aegypti resistance development to commonly used insecticides in Jakarta, Indonesia. PLoS One. 2017;12(12):1–11.

4. Smith LB, Kasai S, Scott JG. Pyrethroid resistance in Aedes aegypti and Aedes albopictus: Important mosquito vectors of human diseases. Pestic Biochem Physiol. 2016;133:1–12.

5. WHO. WHO specifications and evaluations for public health pesticides temephos. Geneva: World Health Organization; 2009.

6. Naqqash MN, Gökçe A, Bakhsh A, Salim M. Insecticide resistance and its molecular basis in urban insect pests. Parasitol Res. 2016;115(4):1363–73.

7. Deming R, Manrique-Saide P, Medina Barreiro A, Cardenã EUK, Che-Mendoza A, Jones B, et al. Spatial variation of insecticide resistance in the dengue vector Aedes aegypti presents unique vector control challenges. Parasites and Vectors. 2016;9(1):1–10.

8. Rahayu R, Herawati V, Fauzia I, Isfhany Y, Hasmiwati, Dahelmi, et al. Susceptibility status of Aedes aegypti (Diptera: Culicidae) larvae against temephos in Padang, West Sumatra, Indonesia. International Journal of Entomology Research. 2018;3(3):24-27.

9. Hamid PH, Ninditya VI, Prastowo J, Haryanto A, Taubert A, Hermosilla C. Current Status of Aedes aegypti insecticide resistance development from Banjarmasin, Kalimantan, Indonesia. Biomed Res Int. 2018;1-7.

10. Ariati J, Perwitasari D, Marina R, Lasut D, Nusa R, Musadad A. Status kerentanan Aedes aegypti terhadap insektisida golongan organofosfat dan piretroid di Indonesia. Jurnal Ekologi Kesehatan. 2018;17(3):135–45.

11. Costa-da-Silva AL, Navarrete FR, Salvador FS, Karina-Costa M, Ioshino RS, Azevedo DS, et al. Glytube: A Conical Tube and Parafilm M-Based Method as a Simplified Device to Artificially Blood-Feed the Dengue Vector Mosquito, Aedes aegypti. PLoS One. 2013;8(1):1–5

12. WHO. Guidelines for laboratory and field testing of mosquito larvicides. Geneva: World Health Organization; 2005.

13. WHO. Test procedures for insecticide resistance monitoring in malaria mosquitoes. Geneva: Wolrd Health Organization; 2016.

14. WHO. Monitoring and managing insecticide resistance in Aedes mosquito populations: interim guidance for entomologists. Geneva: World Health Organization; 2016.

15. Leong CS, Vythilingam I, Liew JWK, Wong ML, Wan-Yusoff WS, Lau YL. Enzymatic and molecular characterization of insecticide resistance mechanisms in field populations of Aedes aegypti from Selangor, Malaysia. Parasites and Vectors. 2019;12(1):1–17.

16. Ipa M, Hendri J, Hakim L, Muhammad R. Status kerentanan larva Aedes aegypti terhadap temephos (organofosfat) di tiga kabupaten/kota Provinsi Aceh. Aspirator-J Vector-borne Dis Stud. 2017;9(2):77–84.

17. Legorreta-Soberanis J, Paredes-Solís S, Morales-Pérez A, Nava-Aguilera E, De Los Santos FRS, Sánchez-Gervacio BM, et al. Coverage and beliefs about temephos application for control of dengue vectors and impact of a community-based prevention intervention: Secondary analysis from the Camino Verde trial in Mexico. BMC Public Health. 2017;17(Suppl 1):93-102.

18. Liu N. Insecticide resistance in mosquitoes: impact, mechanisms, and research directions. Annu Rev Entomol. 2015;60(1):537–59.

19. Francis S, Saavedra-Rodriguez K, Perera R, Paine M, Black WC, Delgoda R. Insecticide resistance to permethrin and malathion and associated mechanisms in Aedes aegypti mosquitoes from St. Andrew Jamaica. PLoS ONE. 2017;12:6 (e0179673).

20. Glunt KD, Oliver SV, Hunt RH, Paaijmans KP. The impact of temperature on insecticide toxicity against the malaria vectors Anopheles arabiensis and Anopheles funestus. Malar J. 2018; 17:131.

21. Whiten SR, Peterson RKD. The influence of ambient temperature on the susceptibility of Aedes aegypti (Diptera: Culicidae) to the pyrethroid insecticide permethrin. J Med Entomol. 2016;53(1):139–43.

22. Hasmiwati H, Supargiyono S. Genotyping of kdr allele in insecticide resistant Aedes aegypti populations from West Sumatra, Indonesia. Biodiversitas. 2018;19(2):552-558.

23. Sinaga LS, Martini, Saraswati LD. Status resistensi larva Aedes aegypti (linnaeus) terhadap temephos (studi di kelurahan Jatiasih kecamatan Jatiasih kota Bekasi provinsi Jawa Barat). JKM. 2016;4(1):142-152.

24. Ikawati B, Sunaryo, Widiastuti D. Peta status kerentanan Aedes aegypti (Linn.) terhadap insektisida cypermethrin dan malathion di Jawa Tengah. Aspirator. 2015;7(1):23-28.

25. Huang YJS, Higgs S, Vanlandingham DL. Biological control strategies for mosquito vectors of arboviruses. Insects. 2017;8(1):1–25.

26. Firmansyah NE, Aulung A, Wibowo H, Subahar R. Activity of Ocimum sanctum leaf extract against Aedes aegypti larvae: midgut histopathological alteration. Aspirator. 2019;11(1):13–18.

27. Ajaegbu EE, Danga SPY, Chijoke IU, Okoye FBC. Mosquito adulticidal activity of the leaf extracts of Spondias mombin L. against Aedes aegypti L. and isolation of active principles. J Vector Borne Dis. 2016;53(1):17–22.
Published
2021-06-30
How to Cite
1.
Kresnadi I, Amin B, Ariq H, Akbar V, Winita R, Syam R, Susanto L, Firmansyah N, Wibowo H. The Susceptibility of Aedes aegypti In Dengue Endemic Areas, Tegal, Central Java Indonesia. blb [Internet]. 30Jun.2021 [cited 23Apr.2024];17(1):11-8. Available from: http://ejournal2.litbang.kemkes.go.id/index.php/blb/article/view/3325
Section
Articles