Deteksi Plasmodium knowlesi Menggunakan Nested Polymerase Chain Reaction (PCR) di Kecamatan Muara Komam Kalimantan Timur

  • Zulfa Zahra Salsabila Institut Teknologi Kesehatan dan Sains (ITKES) Wiyata Husada Samarinda, Jalan Kadrie Oening Gang Monalisa Nomor 77, Air Hitam, Kota Samarinda, Kalimantan Timur, Indonesia
  • Rintis Noviyanti Lembaga Biologi Eijkman Jakarta, Jalan Pangeran Diponegoro Nomor 69, Kenari, Kecamatan Senen, Kota Jakarta Pusat, Indonesia
  • Farah Coutrier Lembaga Biologi Eijkman Jakarta, Jalan Pangeran Diponegoro Nomor 69, Kenari, Kecamatan Senen, Kota Jakarta Pusat, Indonesia
  • Leily Trianty Lembaga Biologi Eijkman Jakarta, Jalan Pangeran Diponegoro Nomor 69, Kenari, Kecamatan Senen, Kota Jakarta Pusat, Indonesia
  • Eman Sutrisna Fakultas Kedokteran Universitas Jenderal Soedirman Purwokerto, Jalan Dr. Gumbreg Nomor 1, Mersi, Purwokerto Kidul, Kecamatan Purwokerto Selatan, Kabupaten Banyumas, Jawa Tengah, Indonesia
  • Lantip Rujito Fakultas Kedokteran Universitas Jenderal Soedirman Purwokerto, Jalan Dr. Gumbreg Nomor 1, Mersi, Purwokerto Kidul, Kecamatan Purwokerto Selatan, Kabupaten Banyumas, Jawa Tengah, Indonesia
Keywords: Malaria, P. knowlesi, nested PCR, Kalimantan Timur

Abstract

Plasmodium knowlesi is a parasite of the genus plasmodium that naturally infects long-tailed macaques (Macaca fascicularis), but currently reported has ability to infect humans.  The identification/detection of P. knowlesi can be done using RDT, microscopic, or molecular examinations using nested PCR.  Nested PCR is the most sensitive and specific method of examination to date.  This study aimed to detect P. knowlesi in humans by RDT, microscopic, and nested PCR examinations.  The study was descriptive with a cross-sectional approach, carried out from March to July 2019.  The samples in this study were 123 patients who were suspected of being infected with malaria and who underwent laboratory tests at the Muara Komam Health Center.  Microscopic examination and RDT examination were carried out at the Muara Komam Health Center, while nested PCR was carried out at the Eijkman Molecular Biology Laboratory Jakarta.  The results of RDT and microscopic examinations showed as many as 16 of 123 (13%) malaria-positive samples of P. falciparum and P. vivax, and 10 of 123 (8.1%) malaria-positive samples of P. falciparum and P. vivax.  Nested PCR tests targeting the rRNA SSU gene were able to identify P. knowlesi by 6 out of 123 (4.87%).  In conclusion, the study showed that Plasmodium knowlesi was detected in humans in Muara Komam, East Kalimantan through nested PCR examination.

References

1. World Health Organization. World malaria report 2021. Geneva; 2021.

2. Plewes K, Leopold SJ, Kingston HWF, Dondorp AM. Malaria: What’s new in the management of malaria? Infect Dis Clin North Am. 2019 Mar;33(1):39–60. doi: 10.1016/j.idc.2018.10.002.

3. Slater L, Ashraf S, Zahid O, Ali Q, Oneeb M, Akbar MH, et al. Current methods for the detection of Plasmodium parasite species infecting humans. Curr Res Parasitol vector-borne Dis. 2022;2:100086. doi: 10.1016/j.crpvbd.2022.100086.

4. Kementerian Kesehatan RI. Keputusan Menteri Kesehatan Nomor 293/MENKES/SK/IV/2009 tentang Eliminasi Malaria di Indonesia. Indonesia; 2009.

5. Kementerian Kesehatan RI. Profil malaria Indonesia 2020. Jakarta; 2020.

6. Bin Said I, Kouakou YI, Omorou R, Bienvenu AL, Ahmed K, Culleton R, et al. Systematic review of Plasmodium knowlesi in Indonesia: a risk of emergence in the context of capital relocation to Borneo? Parasit Vectors. 2022 Jul;15(1):258. doi: 10.1186/s13071-022-05375-8.

7. Herdiana H, Irnawati I, Coutrier FN, Munthe A, Mardiati M, Yuniarti T, et al. Two clusters of Plasmodium knowlesi cases in a malaria elimination area, Sabang Municipality, Aceh, Indonesia. Malar J. 2018 May;17(1):186. doi: 10.1186/s12936-018-2334-1.

8. Lempang MEP, Dewayanti FK, Syahrani L, Permana DH, Malaka R, Asih PBS, et al. Primate malaria: an emerging challenge of zoonotic malaria in Indonesia. One Heal [Internet]. 2022;14:100389. doi: 10.1016/j.onehlt.2022.100389.

9. Berzosa P, de Lucio A, Romay-Barja M, Herrador Z, González V, García L, et al. Comparison of three diagnostic methods (microscopy, RDT, and PCR) for the detection of malaria parasites in representative samples from Equatorial Guinea. Malar J. 2018 Sep;17(1):333. doi: 10.1186/s12936-018-2481-4.

10. Han TZ, Han KT, Aye KH, Hlaing T, Thant KZ, Vythilingam I. Comparison of microscopy and PCR for the detection of human Plasmodium species and Plasmodium knowlesi in southern Myanmar. Asian Pac J Trop Biomed [Internet]. 2017;7(8):680–5. doi: 10.1016/j.apjtb.2017.06.004.

11. Kojom Foko LP, Pande V, Singh V. Field performances of rapid diagnostic tests detecting human Plasmodium species: a systematic review and meta-analysis in India, 1990-2020. Diagnostics (Basel, Switzerland). 2021;11(4). doi: 10.3390/diagnostics11040590.

12. Lau YL, Tan LH, Chin LC, Fong MY, Noraishah MAA, Rohela M. Plasmodium knowlesi reinfection in human. Vol. Emerging infectious diseases. United States; 2011;17:1314–5. doi: 10.3201/eid1707.101295.

13. Daneshvar C, Davis TME, Cox-Singh J, Rafa’ee MZ, Zakaria SK, Divis PCS, et al. Clinical and laboratory features of human Plasmodium knowlesi infection. Clin Infect Dis an Off Publ Infect Dis Soc Am. 2009;49(6):852–60. doi: 10.1086/605439.

14. Miguel-Oteo M, Jiram AI, Ta-Tang TH, Lanza M, Hisam S, Rubio JM. Nested multiplex PCR for identification and detection of human Plasmodium species including Plasmodium knowlesi. Asian Pac J Trop Med. 2017;10(3):299–304. doi: 10.1016/j.apjtm.2017.03.014.

15. Naserrudin NA, Hod R, Jeffree MS, Ahmed K, Hassan MR. The emerging threat of Plasmodium knowlesi malaria infection: a concept paper on the vulnerable factors in human. Int J Environ Res Public Health. 2022;19(7):4419. doi: 10.3390/ijerph19074419.

16. Imwong M, Tanomsing N, Pukrittayakamee S, Day NPJ, White NJ, Snounou G. Spurious amplification of a Plasmodium vivax small-subunit RNA gene by use of primers currently used to detect P. knowlesi. J Clin Microbiol. 2009;47(12):4173–5. doi: 10.1128/JCM.00811-09.

17. Fitri LE, Widaningrum T, Endharti AT, Prabowo MH, Winaris N, Nugraha RYB. Malaria diagnostic update: from conventional to advanced method. J Clin Lab Anal [Internet]. 2022;36(4):e24314. doi: 10.1002/jcla.24314.

18. Sabour S. Diagnostic reliability of nested PCR: Methodological issues on reliability and validity. Vol. 25, Helicobacter. England; 2020. p. e12701. doi: 10.1111/hel.12701

19. Yerlikaya S, Campillo A, Gonzalez IJ. A systematic review: performance of rapid diagnostic tests for the detection of Plasmodium knowlesi, Plasmodium malariae, and Plasmodium ovale monoinfections in human blood. J Infect Dis. 2018;218(2):265–76. doi: 10.1093/infdis/jiy150.

20. Amir A, Cheong FW, de Silva JR, Liew JWK, Lau YL. Plasmodium knowlesi malaria: current research perspectives. Infect Drug Resist. 2018;11:1145–55. doi: 10.2147/IDR.S148664.

21. Nishimoto Y, Arisue N, Kawai S, Escalante AA, Horii T, Tanabe K, et al. Evolution and phylogeny of the heterogeneous cytosolic SSU rRNA genes in the genus Plasmodium. Mol Phylogenet Evol [Internet]. 2008;47(1):45–53. doi: 10.1016/j.ympev.2008.01.031.

22. Ompusunggu S. Malaria hutan di Provinsi Kalimantan Tengah dan Kalimantan Selatan, Indonesia tahun 2013. J Ekol Kesehat. 2016;14(2):145–56. doi: 10.22435/jek.v14i2.4669.145-156.
Published
2023-01-23
How to Cite
1.
Salsabila Z, Noviyanti R, Coutrier F, Trianty L, Sutrisna E, Rujito L. Deteksi Plasmodium knowlesi Menggunakan Nested Polymerase Chain Reaction (PCR) di Kecamatan Muara Komam Kalimantan Timur. blb [Internet]. 23Jan.2023 [cited 2May2024];18(2):183-90. Available from: http://ejournal2.litbang.kemkes.go.id/index.php/blb/article/view/6359
Section
Articles